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Materials and methods

1 Data acquisition and analysis

1.1 Data acquisition
Here we briefly review the experimental setup as depicted in Fig. 3 in the main text. Excita-
tion of the 2SF=0

1/2 state takes place by Doppler-free two-photon excitation of the 1SF=0
1/2 -2SF=0

1/2

transition using a preparation laser at 243 nm. The line width of this excitation is ∼2 kHz
(full width at half maximum (FWHM)) and is limited by time-of-flight broadening (1). Be-
cause this line width is much smaller than the 621 MHz laser detuning necessary to drive the
1SF=1

1/2 -2SF=1
1/2 transition by Doppler-free two-photon excitation, the 2SF=1

1/2 states are only pop-
ulated by Doppler-sensitive two-photon excitation. This leads to a negligible population of
approx. 3× 10−7 in each of the three 2SF=1

1/2 states relative to the population in the 2SF=0
1/2 state,

because only a small number of atoms are in the velocity class that is resonant with this tran-
sition. The atoms then travel from the 1S-2S excitation region to the 2S-4P excitation region,
where they interact with the two counter-propagating beams of the spectroscopy laser at 486 nm.
Detection of the 2S-4P fluorescence only takes place after the production of 2S atoms has been
discontinued at time τ = 0, i.e. the 1S-2S excitation light has been blocked by a chopper wheel
running at 160 Hz. At an excitation light intensity of about 1.4 W/m2 (0.6 W/m2) per direction
of the spectroscopy laser (beam waistw0 = 1.85 mm), on average about 30% of the atoms in the
2SF=0

1/2 state are excited to the 4PF=1
1/2 (4PF=1

3/2 ) state. The Lyman-γ (and, with lower efficiency,
Lyman-α) extreme ultraviolet photons emitted by the atoms upon decay release photoelectrons
from the graphite-coated inner walls of the detectors, which are subsequently counted by the
detectors CEM1 and CEM2. The detector assembly is differentially pumped with a cryopump
to ensure a background gas pressure lower than 1 × 10−7 mbar inside the 1S-2S and 2S-4P
excitation regions.

The recorded counts are binned according to their arrival time τ into 10 delay time intervals
[τi, τi+1], ranging from delay times of 10µs to 2621µs. The width of the intervals was chosen in
a way that provides comparable counting statistics to all 10 data sets and ranges from 50µs for
early delay times to 1711µs for the longest delay time. The individual subsets of data obtained
in this way sample different velocity groups of the excited atoms, which is used to constrain the
first-order Doppler shift (see Sec. 2.1).

For each measurement setting, i.e. orientation of the linear laser polarization θL, the angle
α between the spectroscopy laser beams and the atomic beam is adjusted to be close to α =
90◦ before the actual data acquisition. This is achieved by blocking the spectroscopy laser
beam before the HR mirror that otherwise retroreflects it and then minimizing the slope of the
resulting first-order Doppler shift as a function of atomic velocity (36). Absolute frequency data
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for the 2S-4P transitions is subsequently acquired with active Doppler compensation, i.e. with
counter-propagating, actively stabilized (HR mirror tip/tilt) laser beams, for a specific setting of
the laser polarization angle θL.

A single resonance scan consists of 29 randomized frequency points and takes about 90 s (35).
The resonance is scanned by alternating between the red- and blue-detuned sides to reduce a
possible bias in the deduced line centers by slow drifts in the fluorescence count rate caused by
a drift in the number of 2S atoms reaching the 2S-4P excitation region. At each frequency point,
the signal is integrated over 170 cycles of the chopper wheel, then the polarization is rotated by
90 ◦ (36) and the signal is integrated over another 170 cycles. This rotation of polarization is ac-
complished by coupling light from two paths into the two orthogonal polarization-maintaining
axes of the fiber used for light delivery and successively switching between the paths. Typical
resonances recorded with CEM2 for the first delay interval are shown in Fig. 2B in the main
text.

For each measurement day, data are taken for a fixed value of θL and θL + 90 ◦. In total, a
typical measurement day consists of about 100 resonance scans per polarization direction, lead-
ing to a total number of about 4000 individual resonances per day (2 detectors, 2 polarization
directions, 10 individual velocity subsets).

We observe background counts, i.e. counts when the spectroscopy laser is tuned off-resonance,
caused by the decay of some of the metastable 2S atoms inside the detection region (the dark
count rate of the detectors when no 2S atoms are present is negligible). The off-resonance
background y0, measured relative to the on-resonance amplitude A above the background, is
not identical for the two detectors. On average, y0/A ≈ 0.21 for CEM1 and y0/A ≈ 0.10 for
CEM2, even though the amplitude A is very similar for CEM1 and CEM2. This background is
much larger than the minimum background expected from the decay of unperturbed 2S atoms
flying through the detector, which we estimate contributes only y0/A ≈ 0.002 and is expected
to be identical for both detectors. We attribute the increased background to secondary electron
emission from 2S atoms striking the downstream detector wall near CEM1. This is because the
small size of the opening in the detector wall, designed to allow efficient differential pumping
and a large detection solid angle, does not allow all 2S atoms to leave the detection region, espe-
cially in the presence of unavoidable small misalignments. This process can also account for the
different background levels of the two detectors, since the detection efficiency of the secondary
electrons emitted from the downstream detector wall is not expected to be identical between the
detectors. We have also considered the possibility of collisional quenching, by a background
gas, or Stark quenching, by stray electric fields, of the 2S atoms. We estimate the pressure of
H2 molecules, the dominant background gas in the vacuum chamber, needed to account for the
observed background to be 9 × 10−6 mbar, by far exceeding the experimental upper limit on
the pressure inside the detector, 1× 10−7 mbar. Similarly, an electric field of 50 V/m would be
needed for Stark quenching to explain the background, much larger than the experimental limit
of 0.6 V/m (see Sec. 2.7).

Even though the background seen by the two detectors is different by more than a factor of
two, the transition frequencies determined using our full analysis, but only the data from either
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detector, are in excellent agreement. Using our numerical simulations, we have confirmed that
the presence of a background due to the decay of 2S atoms does not influence the determined
transition frequency. Additionally, we have also repeated the data analysis detailed below, but
including a linear dependence of the background on laser detuning, and find the result to be in
agreement with the result of the main analysis, which assumes only a constant background.

1.2 Line shape model
The line shape of an atom at rest which is subject to small distortions caused by quantum
interference of one additional far-detuned resonance may be expressed by (28):

P (ω,~r) ≈ C

(ω − ω0)2 + (Γ/2)2
+ a(ω − ω0) +

b(ω − ω0)

(ω − ω0)2 + (Γ/2)2
, (S1)

where ω0 is the frequency of the resonance of interest and Γ the natural line width of this
resonance. The geometry dependence expressed by ~r and the frequency separation ∆ of the
perturbing resonance from the resonance of interest is buried in the coefficients C, a, b. We
drop the a term, as discussed in the main text, because the corresponding shifts are smaller than
the shifts due to the b term by an additional factor of Γ2/∆2 < 10−4 for the case of our 2S-4P
spectroscopy, yielding

P (ω,~r) ≈ C

(ω − ω0)2 + (Γ/2)2
+

b(ω − ω0)

(ω − ω0)2 + (Γ/2)2
. (S2)

To take into account the finite Doppler width caused by the transverse divergence of the
atomic beam, we convolve this line shape with a Gaussian:

p(∆ω) =
2
√

ln 2√
πΓG

e
−4 ln 2

(∆ω)2

Γ2
G , (S3)

where ΓG gives the FWHM of p(∆ω) that describes the probability to find an atom with its res-
onance frequency shifted by ∆ω by the first-order Doppler shift. ΓG can in principle be taken
from the simulations of the atomic beam described in the discussion of the first-order Doppler
shift, however there is a slight dependence on experimental parameters such as the angle be-
tween the atomic and laser beam. Since saturation effects and the resulting power-broadening
of the resonance are not explicitly included in the line shape model, they will implicitly show
up as an increase of both ΓG and Γ over the value expected just from atomic beam divergence.
Note that for short delay times (τ < 400µs), Doppler-broadening dominates, while for longer
delay times saturation effects are the dominant broadening mechanism. For these reasons, both
ΓG and Γ are used as free parameters when fitting the experimental data. We find that ΓG (Γ)
ranges from 14 MHz (13 MHz) to 6 MHz (16 MHz) for the different delay times (see Sec. 2.1),
leading to total FWHM line width ranging between 22 MHz and 17 MHz.
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The convolution of Eq. S2 and Eq. S3 can be written as:

F (ω) = C
4
√
π ln 2

ΓGΓ

{
Re[w(z)] +

Γ

2

b

C
Im[w(z)]

}
, (S4)

with z = 2
√

ln 2[(ω − ω0) + iΓ/2]/ΓG and the Faddeeva function w(z) given by (49)

w(z) ≡ e−z
2

(
1 +

2i√
π

∫ z

0

et
2

dt

)
. (S5)

Defining the asymmetry parameter as η ≡ bΓ/4C and replacing the constant multiplicative
prefactor with the free fit parameter A = C 4

√
π ln 2

ΓGΓ
, we recover the Fano-Voigt line shape given

in Eq. 5 of the main text. To account for the experimental background (see Sec. 1.1), a constant
term y0 is added to the line shape (to Eq. S2 and thus Eq. S4) as a free fit parameter.

We test the Fano-Voigt line shape by fitting it to the results of the OBE simulation described
in the main text and find a high suppression of quantum interference line shifts. To test the
robustness of the fit and to control possible biases, we conduct a Monte Carlo simulation with
the experimental frequency sampling of the resonance and the observed signal-to-noise ratio,
including slow drifts in the latter, applied to the line shape from the OBE simulation.

1.3 Data analysis
Each recorded resonance, consisting of N pairs of laser frequency and number of fluorescence
photons detected, is fit with the Fano-Voigt line shape with six free parameters (line center
ν0 = ω0/2π, amplitude A, background y0, Lorentzian line width Γ, Gaussian line width ΓG and
asymmetry parameter η). We assume that the uncertainty σy,i on the number of fluorescence
photons detected yi for each frequency point i is dominated by shot noise, i.e. σy,i ≈ √yi (since
yi � 1, we can approximate the Poisson distribution with a normal distribution). The optimal
values of the free parameters are then found by minimizing χ2, with the uncertainty of the
values corresponding to an increase of χ2 of 1 around the optimal values.

We use χ2
red = χ2/NDOF, with NDOF = N − 6, as a measure of the goodness of fit. The re-

sulting χ2
red distribution for the individual resonance fits deviates from the distribution expected

for the assumed noise in two regards. First, the mode of the observed distribution is about 20%
larger than expected, corresponding to a mean χ2

red of ∼1.20. Second, while the distribution
follows the expected shape for χ2

red . 2, there is an excess of resonance fits with χ2
red & 2.

The former is partly caused by the fact that while the Fano-Voigt line shape describes the
observed line shape very well, there are small deviations between the two. The deviations can
be decomposed in a contribution symmetric about the line center (up to 4% relative deviation)
and a contribution asymmetric about the line center, more than an order of magnitude smaller
than the symmetric contribution. The symmetric contribution is caused by (1) saturation effects
related to the depletion of the initial 2SF=0

1/2 state and (2) non-Gaussian Doppler-broadening, both
not included in the Fano-Voigt line shape. This symmetric contribution can lead to a sampling
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bias, as discussed in Sec. 2.5. The asymmetric contribution is caused by quantum interference
effects not described by the Fano-Voigt line shape and discussed in Sec. 2.4. These deviations
increase the fit residuals over what would be expected from pure shot noise and shift the mode
of the observed χ2

red distribution to higher values. From our Monte Carlo simulation used to test
the Fano-Voigt line shape (see Sec. 1.2), we expect this effect to increase the mode by 10%.

Additionally, there are other sources of noise present in the system. Besides shot noise,
we expect the dominant noise contribution to be drifts in the number of 2S atoms reaching the
2S-4P excitation region caused by built-up of hydrogen ice on the cryogenic nozzle and drifts in
the 243 nm laser power and in the condition of the RF discharge producing the hydrogen atoms.
This additional noise also shifts the mode of the observed χ2

red distribution to a higher value than
expected for pure shot noise.

These drifts also cause an excess of resonance fits with χ2
red & 2 as compared to the shot

noise only situation, as can be deduced from our Monte Carlo simulation when properly model-
ing the drifts by interpolating the observed line amplitude and background as function of time.
Another contribution are short (i.e. only affecting one or two frequency points), but large per-
turbations of the system, such as discharges in the detectors causing a short spike in count rate.
To remove such events from the data analysis, a χ2

red cut-off of 3 is introduced, i.e. individual
resonance fits with a χ2

red ≥ 3 are neglected in the data analysis. This results in a removal of
less than 4% of the recorded resonances. The effect of this cut-off on the determined transition
frequencies is within the final uncertainties.

By design, the free parameter η of the Fano-Voigt line shape is correlated with the line center
ν0. For the typical signal-to-noise ratios of the recorded resonances, this leads to a significantly
larger uncertainty on the line center when fitting the Fano-Voigt line shape as compared to
fitting the Voigt line shape (where η = 0). To decrease this uncertainty, η is not treated as a
free parameter for each resonance, but rather treated as one free parameter shared by a subset
of resonances, effectively increasing the signal-to-noise ratio. Each subset only contains data
taken for a specific laser polarization setting θL and for a single delay time interval and detector
and thus subject to the same line distortions due to quantum interference corresponding to the
same value of η. With this procedure, the uncertainty on the line center is reduced by about a
factor of 2 and to the same level as when using the Voigt line shape. Since the Fano-Voigt line
shape tends to be a numerically unstable fit for resonances where the Gaussian broadening is
negligible (ΓG < 0.1 MHz), we use a Fano-Lorentzian fit, i.e. the line shape given in Eq. S2
that does not include the Gaussian broadening of the Fano-Voigt. Both procedures, fitting using
a shared η and using the Fano-Lorentzian fit where appropriate, do not change the determined
transition frequencies within the fit uncertainty.

Finally, to determine the transition frequencies given in the main text, small model, sampling
bias and light force shift corrections (see Sec. 2.4, 2.5 and 2.3) are determined for each recorded
resonance and applied to the extracted line center. The transition frequencies are deduced by
a weighted average of the line centers for all laser polarization settings θL, all delay times and
both detectors, using the fit uncertainty on the line center as weight. The statistical uncertainty
given corresponds to the uncertainty of the weighted average. The χ2

red of this weighted average
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is 1.16 for both the 2S-4P1/2 and 2S-4P3/2 transitions.

2 Corrections and uncertainties
Lists of the corrections applied and the contributions (at the one standard deviation σ level)
to the total measurement uncertainty for two measured transitions 2S-4P1/2 and 2S-4P3/2 are
given in table S2. We assume that the individual uncertainty contributions in each list are not
correlated and add them in quadrature. The uncertainty contributions are, however, correlated
between the two transition frequencies and we give the corresponding correlation coefficient r
(rX,Y = cov(X,Y )

σXσY
for the contributions X , Y , with cov(X, Y ) the covariance between X and Y ).

The derived corrections and uncertainties for the 4P fine structure centroid ν2S−4P and 4P fine
structure splitting ∆νexp

FS (4P) are given in Table 1 in the main text and table S3, respectively. In
the following, each of the items in the lists is briefly discussed.

2.1 First-order Doppler shift
The suppression of the first-order Doppler shift using an active fiber-based retroreflector (AFR)
and the experimental constraint on this suppression have been discussed in the main text and
at length in (36). In contrast to (36), where a symmetric line shape was used to determine the
line center, we here analyze our data as detailed in Sec. 1.3 using the Fano-Voigt line shape
and small corrections from simulations. This is important because there is a dependence of the
line distortions due to quantum interference on the interaction time with the spectroscopy beam
and thus the mean velocity of the atoms (see Sec. 2.4). If those line distortions are not properly
accounted for, they can result in an apparent shift of the transition frequency as a function of
delay time, thus mimicking a Doppler shift.

The velocity distribution of the atoms for the different detection delay times is not only given
by the initial velocity distribution of the atoms leaving the nozzle and the subsequent collimation
by the apertures (see Fig. 3 of the main text), but is also influenced by the beam radius, power
and detuning of the 243 nm laser that excites the ground state atoms to the 2SF=0

1/2 level. To
model this, we perform a Monte Carlo simulation of atomic trajectories, taking into account the
1S-2S and 2S-4P excitation. To estimate the uncertainty of this approach, we vary the input
parameters, including the initial velocity distribution, and compare the simulation results with
experimentally accessible parameters such as the signal amplitude and line width for different
delay times, which are both highly sensitive to the velocity distribution. The mean velocity
vi of atoms excited to the 4P level is found to range between 295(40) m/s and 85(10) m/s for
the ten different delay time intervals, leading to an overall mean velocity of v̄ = 240(30) m/s
for all delay times considered. The transverse velocity distribution, i.e. along the direction of
the 486 nm beams and relevant for Doppler broadening as opposed to a shift, is approximately
Gaussian with a FWHM that ranges from 6(1) m/s down to 1.9(2) m/s.
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Using these mean velocities vi and the measured transition frequencies νi for the ten differ-
ent delay time intervals, the rate of change m of the transition frequency as a function of mean
velocity, or Doppler slope, can be extracted for different subsets of the data. This is done by
fitting a linear model ν = mv+δν to the data, with the uncertainty on the Doppler slope derived
from the uncertainty on the measured transition frequencies. If χ2

red = χ2/8 of the determina-
tion is found to be above 1, the Doppler slope uncertainty is scaled with

√
χ2

red to arrive at a
conservative estimate of the Doppler slope uncertainty σm. Finally, the corresponding Doppler
uncertainty σν,D on the transition frequency averaged over the delay times is found by multiply-
ing the Doppler slope uncertainty with overall mean velocity of all delay times, σν,D = σmv̄.

When comparing the Doppler slopes extracted in this way for different measurement days,
we find some excessive day-to-day scatter. We attribute this to slight misalignments in the
AFR, such as in the angle α between the spectroscopy laser beams and the atomic beam or in
the position of the beam waist of the laser beams, which should ideally coincide with HR mirror
surface (36). Indeed, for a few measurement days the observed line width was slightly larger
than on average, hinting at a possible slight misalignment of α. These misalignments can cause
a residual Doppler shift with a sign depending on the direction of misalignment. Since the AFR
is re-adjusted for most measurement days and since we expect the misalignments to be in a
random direction, we expect the Doppler shift to compatible with zero when averaging over a
sufficient number of days or, equivalently, re-alignments.

For the complete data set for each transition measured, we find the Doppler slopes to be
m = 0.7(12.1) Hz/(m/s) and m = 9.5(11.8) Hz/(m/s) for the 2S-4P1/2 and 2S-4P3/2 transi-
tions, respectively, and thus compatible with zero. The excessive scatter manifests itself in an
increased χ2

red of 1.83 and 1.47 for the two transition and has already been taken into account
for the uncertainties by scaling with

√
χ2

red. Since the Doppler slopes are found to be compat-
ible with zero, we do not apply a correction to the transition frequencies, but only include the
uncertainty on the slopes. Finally, the Doppler uncertainty on the transition frequencies ν1/2

and ν3/2 is found to be 2.92 kHz and 2.84 kHz, respectively. We assume the uncertainties to be
uncorrelated for the two transitions (r = 0) and thus find a Doppler uncertainty of 2.13 kHz for
ν2S−4P.

2.2 Quantum interference
While we have thoroughly tested the compensation of line shifts due to quantum interference
with the Fano-Voigt line shape using our simulations (see Sec. 1.2, 1.3 and 2.4), we here es-
timate the level of compensation directly from the experimental data. The basic idea is that
any residual line shifts should follow the same functional behavior ∆ν ≡ ∆ν(θL), where θL is
again the linear laser polarization angle, as the uncompensated line shifts seen when using the
Voigt line shape for data analysis (see Fig. 4 (A and B) in the main text). For this purpose, we
parametrize ∆ν(θL), starting from the analytical expression derived in the perturbative limit.
For the 2S-4P1/2 transition, ∆ν(θL) is a simple sinusoidal function, while for the 2S-4P3/2

transition ∆ν(θL) is a more complicated function that can be approximated by a power series
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in sinusoidal functions (as will be detailed elsewhere). The parametrization ∆ν(θL, Ares,∆ν0)
has two free parameters, amplitude Ares and offset ∆ν0, while the phase and period are fixed
to the value of the uncompensated line shift and 180 ◦, respectively. ∆ν(θL, Ares,∆ν0) is then
fit to the data analyzed with the Fano-Voigt line shape, taking into account only the statistical
uncertainty.

We first analyze the difference between the detectors, i.e. the difference in the observed
line centers, which is somewhat more sensitive to quantum interference effects than the signal
from the individual detectors. Here, we find a residual amplitude of Ares = 4.46(1.36) kHz
(compared to 54.8(1.3) kHz for the Voigt line shape) for the 2S-4P1/2 transition and a residual
amplitude of Ares = −1.68(2.00) kHz (compared to 28.6(2.0) kHz for the Voigt line shape) for
the 2S-4P3/2 transition. Thus, the residual amplitude of the 2S-4P3/2 transition is compatible
with zero, while there is small residual effect for 2S-4P1/2 transition.

To identify the origin of the residual amplitudes and to estimate the related uncertainty,
we analyze the data of the individual detectors (see Fig. 4 (C and D) in the main text). The
amplitudes of residual line shifts Ares are found to be well compatible with zero for detector
CEM2 for the 2S-4P1/2 transition (Ares = −0.09(0.84) kHz) and for both detectors CEM1 and
CEM2 for the 2S-4P3/2 transition (Ares = −0.16(1.23) kHz and Ares = 0.11(1.06) kHz, respec-
tively). For detector CEM1 and the 2S-4P1/2 transition, we find a small residual amplitude of
Ares = 3.23(1.16) kHz with a goodness of fit of χ2

red = 6.6. Thus, the residual amplitude seen
in the difference is solely caused by the data from one of the detectors, CEM1. We note that
otherwise the data from the two detectors, including the line shifts due to quantum interference
(see Fig. 4 (A and B) in the main text), are very similar. To cross-check the compensation of
asymmetries with the Fano-Voigt line shape, we have also analyzed the residual amplitudes us-
ing the Voigt line shape combined with our simulations (resulting in large corrections of tens
of kilohertz) and find very similar results. The significance of this nonzero residual amplitude
should be contrasted with the fact that a simple weighted average describes the data equally
well (χ2

red = 6.7). Furthermore, as evident in the large χ2
red, we have so far neglected residual

Doppler shifts, which contribute an uncertainty as large as the residual amplitude and are ex-
pected to cause the day-to-day scatter seen here (with data for different θL values recorded on
different days) (see Sec. 2.1). Note that discarding the data for θL = 0 ◦ and θL = 90 ◦ for the
2S-4P1/2 transition, which shows increased scatter as discussed in the main text, reduces the
significance of the nonzero residual amplitude only slightly.

The transition frequencies given in the main text are determined by averaging over θL. To
estimate residual quantum interference line shifts of these transition frequencies, the relation
of the amplitude Ares and offset ∆ν0 is investigated using our OBE simulations, using the ex-
perimental sampling of θL. We find ∆ν0/Ares ≈ 0.2 and ∆ν0/Ares ≈ −0.2 for the 2S-4P1/2

and 2S-4P3/2 transitions. With this, and after averaging over the two detectors, the residual
line shifts are determined to be 0.29(33) kHz and 0.00(26) kHz for the 2S-4P1/2 and 2S-4P3/2

transitions, respectively, where χ2
red > 1 has been taken into account by scaling the uncertainties

with
√
χ2

red.
We have tried to reproduce, using our simulations, the occurence of a residual amplitude
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in only one of the two detectors, but were not able to come up with a satisfactory explanation.
One potential reason for a broken symmetry between the detectors is that the 2S-4P excitation
region is not pointlike, but corresponds to the laser beam size (beam waist w0 = 1.85 mm,
detector radius 28 mm). This in turn leads to the two detectors observing slightly different solid
angles and atomic velocities, and we indeed observe a slight differential Doppler shift between
the two detectors.

However, when averaging over the two detectors and θL, both the line shifts due to this
residual amplitude, as shown above, and the residual Doppler shift (see Sec. 2.1) are found
to be compatible with zero, which is why we are confident that this residual effect does not
influence our final results obtained by this average.

Thus, we assign an uncertainty of 0.33 kHz and 0.26 kHz due to residual quantum inter-
ference line shifts to the measured transition frequencies ν1/2 and ν3/2 respectively. Since the
uncertainties are assumed to be limited by statistics, they are uncorrelated (r = 0) for the two
transitions, resulting in an uncertainty of 0.20 kHz for ν2S−4P.

2.3 Light force shift
Atoms that are on a classical trajectory through a near-resonant standing wave may be subject
to forces that are attractive to the nodes or anti-nodes for red or blue detuning, respectively (50).
In this simple classical view, it seems obvious that the observed resonance can be distorted be-
cause this effect can enhance the red wing of the resonance while reducing the signal on the
blue side, or, depending on the trajectory, vice versa. In fact one may model these line dis-
tortions by solving the OBEs with a position-dependent Rabi frequency simultaneously with
Newton’s equation of motion (51,52). However, this simple classical description of atomic mo-
tion is attached to several conditions (52). One of them is that the atoms need to be sufficiently
localized in order to assign a position-dependent force to them. In our case this condition is
violated for two reasons: the transverse temperature of the 2S atoms is low enough to yield a
coherence length of the atomic matter wave comparable to the periodicity of the optical poten-
tial (λ/2 = 243 nm). In addition, a single photon recoil is enough to separate the ground state
part of the wave function by several half wavelengths from the excited state part while the atom
crosses the 2S-4P spectroscopy beams.

The system then has to be described by including the atom’s transverse momentum p along
the 2S-4P spectroscopy laser beams in the quantum mechanical model together with the atom’s
internal dynamics. Interaction with the laser beams changes the atom’s momentum by ±n~k,
corresponding to the exchange of n photons with momentum ~k, and thus couples the corre-
sponding momentum states, while spontaneous decay leads to a random recoil which averages
to zero. In this picture, the coupling of the momentum states modifies the line shape of the
transition probed and leads to a coherent superposition of the momentum states, corresponding
to a partial localization similar to the classical picture. An analytic solution to this problem
can be obtained with the effective Hamiltonian approach (see e.g. (53)), using the Wigner func-
tion to describe the initial momentum state of the atoms emerging from the nozzle and flying
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through the apertures in the apparatus (subject of an upcoming publication). Because of the
rapid decay of the 4P excited state to 1S ground state, the otherwise infinite momentum space
can be reduced and n = 4 is found to be sufficient to describe the system. This analytic solution
ignores the back decay of the excited 4P state to the initial 2SF=0

1/2 state, but since the branching
ratio is only 4% this approximation is adequate and has been confirmed with more sophisticated
models including this back decay. While it should in principle be possible to include effects that
influence the initial momentum state such as the 1S-2S excitation in this analytical solution, we
could also show that it is sufficient to describe the initial momentum state as a (fully delocalized)
momentum eigenstate |p〉. We can then employ our OBE simulation to describe the system in a
realistic experimental setting by including the momentum eigenstates |p+ n~k〉 along with the
internal states of the atom. Using the atomic trajectories discussed in Sec. 2.1 as input for the
OBE simulation, a Monte Carlo simulation can then be used to estimate shifts of the observed
line center caused by the coupling of momentum states.

In this way, we find a light force shift of -0.43(40) kHz and -0.26(25) kHz for the 2S-4P1/2

and 2S-4P3/2 transitions, respectively. The ν1/2 and ν3/2 transition frequencies have been cor-
rected for this shift. The uncertainty is limited by our knowledge of the atomic velocity distri-
bution, which is correlated for the two transitions. Thus the uncertainties are fully correlated
(r = 1) for the two transitions, leading to a correction of -0.32(30) kHz for ν2S−4P.

2.4 Model corrections
The Fano-Voigt line shape is derived from the perturbative description of quantum interference,
i.e. it does not account for effects such as back decay from the excited 4P state to the initial
2SF=0

1/2 state and the depletion of this initial state, leading to a saturation of the observed tran-
sition. In our system, 4% of the decays of the 4P state lead back to the initial 2SF=0

1/2 state and
we excite about 30% of the 2S atoms to the 4P state. Under these conditions, the line asymme-
tries due to quantum interference can increase more than two-fold over the perturbative regime
for the slowest probed atoms, i.e. those with longest interaction times with the spectroscopy
laser. However, we find that the Fano-Voigt line shape is still a good description for our system,
since the bulk of the increased line asymmetry is matched by it and thus can be accounted for
by fitting the Fano-Voigt line shape to the observed resonances. Only a small residual asym-
metry that does not match the asymmetry of the Fano-Voigt line shape remains. Importantly,
this residual asymmetry is significantly less detection geometry-dependent than the asymmetry
removed by the Fano-Voigt line shape, since it mainly stems from the small modification of the
2SF=0

1/2 population caused by the back decay of the 4P state to this state, which is independent
of the detection geometry. This allows us to model this residual asymmetry without the need to
accurately describe the detection geometry. The line shifts associated with this residual asym-
metry depend on the intensity of and interaction time with the spectroscopy laser and are on the
order of 1 kHz. As all effects stemming from quantum interference, the shifts are of opposite
sign for the two perturbing resonances. Since the intensities in the experiment were chosen such
that the Rabi frequencies are approximately identical for the two transitions probed, the shifts
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are of ratio 2:1 for the 2S-4P1/2 and the 2S-4P3/2 transitions. Thus, for the 4P fine structure
centroid ν2S−4P they largely cancel.

Apart from these effects related to quantum interference, there is also an AC Stark shift of
the atomic levels involved and a line shift associated with off-resonant excitations caused by
optical pumping into the 2SF=1

1/2 states. Both contributions lead to small shifts of the observed
line center on the order of 0.10 kHz. The initial population in the 2SF=1

1/2 states from Doppler-
sensitive two-photon excitation is negligible compared to the population accumulated in these
states through optical pumping.

All these effects are included in the OBE simulations of our system. For each recorded res-
onance, a corresponding line shape is generated from the OBE simulation. Experimental noise,
consisting of shot noise and slow drifts in the number of 2S atoms contributing to the signal,
is added and the resulting resonance is fit with the Fano-Voigt line shape, a process that is re-
peated multiple times in the fashion of a Monte Carlo simulation. The line center determined
from these fits is then used a model correction for the recorded resonances. With this, we find a
model correction of 1.34(23) kHz and -0.50(10) kHz for the ν1/2 and ν3/2 transition frequencies,
respectively. The uncertainty is estimated by varying the input parameters to the OBE simula-
tion within the experimental constraints. Some of the contributions to the uncertainty, such as
the spectroscopy laser power, are uncorrelated, while others, such as the atomic velocity distri-
bution, are correlated for the two transition measurements. The total uncertainty is found to be
partially anticorrelated (r = −0.65) for the two measurements, resulting in a model correction
of 0.11(6) kHz for ν2S−4P.

2.5 Sampling bias
As has been detailed in Sec. 1.3, there are small deviations symmetric about the line center
between the observed line shape and the Fano-Voigt line shape used for data analysis (the
asymmetric deviations are much smaller and included in the model corrections discussed in
Sec. 2.4). In combination with an experimental frequency sampling of the resonances that is
not quite symmetric about the line center, this can lead to a bias in the line center determined
from the fit to the resonance. We use our Monte Carlo simulations discussed in Sec. 2.4 to
estimate this bias and find it to be up to 2.1 kHz for the 2S-4P3/2 transition.

To reduce this bias, we enforce fair sampling of the resonance by selectively removing up
to two experimental frequency points for each resonance. The procedure is the following: First,
the simulated resonance is fit with the Fano-Voigt line shape for all available simulation points
and with no experimental noise added. Then, it is fit for the experimental frequency points,
with the difference in extracted line centers giving the bias to be reduced. Next, experimental
frequency points are removed and the simulated resonance is fit again. This is repeated for all
combinations of removing one or two points. Finally, we choose to remove the one or two
experimental points without which the bias is lowest (no point is removed if the bias is lowest
for full sampling), resulting on the removal of 1.94 frequency points on average. This procedure
is applied to every recorded resonance. The experimental data is then fit again with these points
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removed, leading to a slight increase in the statistical uncertainty of approximately 4%.
After applying this procedure, the sampling bias is, again using the Monte Carlo simulations,

found to be 0.34 kHz and 0.83 kHz for the 2S-4P1/2 and 2S-4P3/2 transitions, respectively. The
transition frequencies ν1/2 and ν3/2 have been corrected for this bias and an uncertainty of
0.40 kHz and 0.70 kHz, respectively, is assigned to these corrections. This uncertainty accounts
for the fact that a separate OBE simulation is used to estimate the light force shift (see Sec. 2.3)
and that this simulation shows very similar symmetric deviations (since it also includes the same
saturation effects and same Doppler-broadening as the quantum interference OBE simulation)
and thus leads to a very similar sampling bias. In order to avoid a double counting of this bias,
we only correct for the bias found for the quantum interference OBE simulation, but add the bias
of the light force shift OBE simulation as uncertainty. The uncertainty for the two transitions is
uncorrelated (r = 0), and thus ν2S−4P includes a correction of 0.44(49) kHz.

2.6 Second-order Doppler shift
The second-order Doppler effect is not canceled by the excitation of the 2S-4P transition utiliz-
ing phase-retracing beams. However, the signal weighted, mean squared velocity v2 = 255(30) m/s
provided by the cryogenic source of 2S atoms and estimated using the Monte Carlo simulations
described above, is sufficiently small so that the second-order Doppler shift only amounts to

∆νSOD = −1

2

v2

c2
ν2S−4P = −0.22(5) kHz. (S6)

The measured transitions frequencies ν1/2 and ν3/2 are corrected for the second-order Doppler
shift by subtracting ∆νSOD. The uncertainty is fully correlated (r = 1) for the two transitions,
and thus the correction and uncertainty for ν2S−4P is the same as for the individual frequencies.

2.7 dc-Stark shift
Special care was taken to suppress stray electric fields in the 2S-4P excitation region to avoid the
associated line shifts due to the dc-Stark effect. A grounded Faraday cage made from stainless
steel mesh with two wires (diameter 30µm) per millimeter shields the excitation region from
the static electric fields created by the channel electron multiplier input surfaces (+270 V) (see
Fig. 3 in the main text). The Faraday cage and all surfaces in the excitation region are spray-
coated with colloidal graphite to suppress the built-up of patch charges and to avoid fields due
to contact potentials. An upper limit of 0.6 V/m has been obtained for the field strength of
stray electric fields using 1S-2S spectroscopy in a dedicated setup with similar dimensions and
identical coating (1, 2, 54). We use this upper limit on the field strength to estimate line shifts
for the 2S-4P transitions.

The dc-Stark effect shifts the energies of the 4PF=1
1/2 and 4PF=1

3/2 levels (the shift of the 2SF=0
1/2

level is negligible on the current level of accuracy) in the presence of a static electric field
~F , with the energy shift ∆ω = 2π × aj,mF

F 2 proportional to the square of the field strength
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F = |~F |. The coefficients aj,mF
depends on the orientation of the static electric field ~F with

respect to the quantization axis of the atom, given by the linear laser polarization ~E. The
coefficients aj,mF

, derived by diagonalizing the atomic Hamiltonian in the presence of a static
electric field and fitting the resulting energy shifts with a quadratic function, are shown in table
S1.

The upper limit for the dc-Stark shift of the transition frequencies for the worst case orien-
tation of the stray electric fields is −0.03 kHz and −0.49 kHz for the 2S-4P1/2 and 2S-4P3/2

transitions, respectively. However, we assume that the orientation of possible stray electric
fields ~F is not correlated with the orientation of the linear polarization ~E of the spectroscopy
laser. Since the transition frequencies ν1/2 and ν3/2 are determined from data taken for different
orientations of the laser polarization (see Fig. 4 in the main text), the upper limit on the dc-Stark
shift for these transitions is further reduced by averaging over the different orientations of stray
electric fields. With this, we estimate an uncertainty due to the dc-Stark shift of 0.03 kHz and
0.30 kHz for the ν1/2 and ν3/2 transition frequencies, respectively. The uncertainty for the two
transitions is uncorrelated (r = 0) and the combined uncertainty is 0.20 kHz for ν2S−4P.

Furthermore, we note that the shift of the line center extracted by fitting the observed reso-
nance may be smaller than the shift of the energy levels, since the electric field does not only
shift the energy of the involved levels, but mixes different atomic levels. In this way, exci-
tations of the 4S and 4D levels (which now have some admixture of the 4P level) become
dipole-allowed. These transitions tend to cancel out the dc-Stark shift of the 4P levels when the
transitions are within the recorded laser frequency range. We have however not fully investi-
gated this cancellation, which depends on the excitation dynamics of the system, and thus here
use the shift of the energy levels as upper limit for the shift of the resonances.

2.8 Zeeman shift
The earth’s magnetic field is pre-compensated by three orthogonal pairs of Helmholtz coils out-
side the vacuum chamber. In addition, the 2S-4P excitation region is shielded from residual
magnetic fields by a double-layer high-permeability metal (mu-metal) shield. Thereby, mag-
netic fields are suppressed to less than 1 mG in a volume of about 15 cm3 around the 2S-4P
excitation region.

For a given magnetic flux density B, the linear Zeeman effect shifts the energies of the
magnetic sublevels mF = ±1 of the 4PF=1

1/2 (4PF=1
3/2 ) state by ∆E/~ = gFµBBmF/~ = 2π ×

0.467 kHz/mG (∆E/~ = 2π × 2.33 kHz/mG), using the appropriate g-factor gF and the Bohr
magneton µB. The observed transition frequency, i.e. the center of weight of the signals from
the different magnetic sublevels, will only be shifted if the mF = ±1 sublevels contribute
with different amplitudes. This situation requires some circularly polarized light about the
direction of the magnetic field, i.e. a mismatch in the intensities |EL|2 and |ER|2 of the left- and
right-polarized components as given by the Stokes parameter v = (|EL|2 − |ER|2)/(|EL|2 +
|ER|2). An upper limit for the shift of the observed transition frequency of ∆ω = ∆E/~ × v
is obtained by assuming that the magnetic field is aligned along the spectroscopy laser beam.
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We determine v from the measured intensity polarization extinction ratio Per = 1/200, limited
by the polarization-maintaining fiber, and find v = 0.14. Thus, we estimate the uncertainty
due to the Zeeman shift to be below 0.07 kHz and 0.33 kHz for the ν1/2 and ν3/2 transition
frequencies, respectively. The shift is uncorrelated (r = 0) for the two measured transitions and
a combined uncertainty of 0.22 kHz is assigned for ν2S−4P. The quadratic Zeeman effect that
would also affect the initial 2SF=0

1/2 , mF = 0 and the 4PF=1
1/2 , mF = 0 and 4PF=1

3/2 , mF = 0 states
is negligible at our current level of accuracy.

2.9 Pressure shift
To estimate the pressure shift we use the impact approximation for binary collisions (55). The
interaction energy between the perturbed and the perturbing atom is required as input for this
theory and is given by the near-field dipole-dipole interaction:

V̂ =
1

4πε0R3

(
d̂1xd̂2x + d̂1yd̂2y − 2d̂1zd̂2z

)
, (S7)

where R is the distance between the atoms and d̂ij with j = x, y, z are the components of the
electric dipole moment for the perturbing (i = 1) and perturbed (i = 2) atoms. The energy shift
of the product state |n〉 = |n1〉 ⊗ |n2〉 = |n1, n2〉 of the perturbing and perturbed atoms due to
the Van-der-Waals interaction can be calculated using second-order perturbation theory:

EVdW(n) =
∑

m,En 6=Em

|〈n|V̂ |m〉|2
En − Em

=
C6

R6
, (S8)

where |m〉 are all possible product states of the two atoms andEm is the energy of state |m〉. The
interaction energy is thus ∝ 1/R6 and the strength of the interaction is expressed by the coeffi-
cientC6. For resonant interactions,En−Em = 0, and Eq. S8 is not valid anymore. Furthermore,
in our case the perturbing and perturbed atoms can be connected by dipole-allowed transition
(e.g. colliding 4P and 1S atoms) and thus a resonant interaction of |n1, n2〉with |n2, n1〉 and non-
vanishing 〈n1, n2|V̂ |n2, n1〉 is possible, corresponding to an excitation exchange between the
atoms. Nevertheless, it is well known that these interactions only cause a line broadening, but
do not cause a line shift (56). Hence we can estimate the largest contribution with the smallest
possible En − Em and use the analytic expressions for the dipole matrix elements for collid-
ing hydrogen atoms in any states. Furthermore, we assume that all perturbing particles are 1S
atoms, since the density of 2S atoms is only ∼10−3 of the 1S atom density and the contribution
due to collisions with background molecules can be neglected as there is no close degeneracy.
The perturbation of atoms in the 2S initial state causes a negligible line shifts on the current
level of accuracy, leaving only the perturbation of the excited 4PJ atoms caused by collisions
with 1S atoms to consider. We approximate the sum in Eq. S8 with the minimum combined
internal energy difference given by the hyperfine splitting of 4Pj states (7.39623(7) MHz for
j = 1/2 and 2.95647(3) MHz for j = 3/2, see Fig. 2A in the main text) and obtain

C6(4P1/2 − 1S) = 1.9× 105hcR∞a
6
0, C6(4P3/2 − 1S) = 1.9× 106hcR∞a

6
0, (S9)
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with the Bohr radius a0. Within the impact approximation the C6 Van-der-Waals interaction
leads to a frequency shift of (55)

∆ω ≈ 2.9

(
C6

~

)2/5

v3/5N, (S10)

where v is velocity of colliding atoms and N is the density of the perturbing atoms. From
our experimental data, we estimate the concentration of 1S atoms in the beam to be Nbeam ≈
2.2 × 1015 atoms/m3 at temperature 5 K and the concentration of background atoms to be not
more than Nbkg ≈ 2.4 × 1015 atoms/m3 at temperature 300 K. Estimating the collisional ve-
locity of the atoms by their mean velocity, we find the contributions to the pressure shifts of
the two measured transitions to be ∆ω(4P1/2 − 1S, beam-beam) ≈ 2π × 3 Hz, ∆ω(4P1/2 −
1S, beam-background) ≈ 2π×9 Hz, ∆ω(4P3/2−1S, beam-beam) ≈ 2π×8 Hz and ∆ω(4P3/2−
1S, beam-background) ≈ 2π×23 Hz. Thus, the pressure shift is estimated to be below 0.01 kHz
for the 2S-4P1/2 transition and below 0.03 kHz for the 2S-4P3/2 transition. The uncertainty is
assumed to be fully correlated (r = 1) for the two transitions, resulting in an uncertainty of
0.02 kHz for ν2S−4P.

2.10 Laser spectrum and frequency calibration
The two laser systems used in the measurement, the spectroscopy laser for 2S-4P excitation
at 486 nm and the preparation laser for 1S-2S excitation at 243 nm, share a similar design.
Both laser systems consist of an external cavity diode laser as master oscillator running at
972 nm (57). The frequency of the lasers is stabilized to high-finesse Fabry-Pérot cavities (58),
which reduces the laser line width to a few Hz. However, the delta-shaped laser line sits on
a weak but broad noise pedestal (58). After power amplification with a tapered amplifier, the
light is frequency doubled (frequency doubled twice) to 486 nm (243 nm) for the spectroscopy
(excitation) laser system. The spectral purity of the lasers is routinely monitored by a beat note
between the two systems at 486 nm.

Asymmetries of the noise pedestal that might fold into the observed 2S-4P line shapes are
small because of the use of long external cavity diode lasers (see (57, 58)). We obtain an upper
limit of 0.10 kHz by artificially removing the noise pedestal on one side of the measured laser
spectrum, numerically folding it into the 2S-4P line shape, and fitting the result. The same laser
was used for both transition measurements and thus the upper limit is fully correlated (r = 1)
for the two measurements.

Both laser systems are phase-coherently linked to an Er-doped fiber frequency comb which
is referenced to an active hydrogen maser. The maser serves as the frequency reference for the
experiment and is calibrated (steered) via the global positioning system (GPS), resulting in a
fractional frequency uncertainty of 1 part in 1013. The maser calibration uncertainty translates
to an uncertainty of 0.06 kHz for the 2S-4P transition frequencies and is fully correlated (r = 1)
for the two measured transitions.
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The absolute frequencies of the laser systems are determined with a beat note with the
frequency comb at 972 nm. The frequency of the 2S-4P spectroscopy light ν486

Laser at 486 nm at a
given time t can be deduced from the beat note data with

ν486
Laser = 2× (N × νrep + 2νCEO − νLO) + 2× (νbeat(t)− νAOM(t)), (S11)

where νrep = 250 MHz denotes the repetition rate of the the frequency comb, νCEO = 30 MHz
the carrier-envelope offset frequency, νLO the frequency of an additional local oscillator used to
mix down the frequency of the beat note to νbeat(t) ≈ 20 MHz and νAOM(t) ≈ 350±30 MHz the
frequency of the acousto-optic modulator (AOM) used for scanning over the atomic resonance.
The comb mode numbers are N = 1 233 042 and N = 1 233 044 for the measurement of the
2S-4P1/2 and 2S-4P3/2 transitions, respectively.

The laser frequencies are determined with a linear fit of the comb beat note data νbeat(t)
and using Eq. S11, leading to an uncertainty in the laser frequency determination of less than
0.10 kHz for each recorded resonance. This leads to a negligible uncertainty for the determined
transition frequencies.

2.11 Recoil shift
Energy and momentum conservation require the absorbed photon energy to be larger than the
atomic resonance frequency ν by the recoil shift of the atom upon absorption. The correspond-
ing recoil shift can be written as

∆νrecoil =
h

2MH

(ν
c

)2

≈ 837.23 kHz, (S12)

with the mass of the hydrogen atom MH. ∆νrecoil is known with much smaller uncertainty than
required here. h/MH can be calculated using the experimental values of the ratio h/me of the
Planck constant h and the electron mass me, the binding energy of the H atom and the mass of
the proton and the electron in atomic mass units (3). The transition frequencies ν1/2, ν3/2 and
ν2S−4P given in the main text have been corrected for the recoil shift.

2.12 Hyperfine corrections
In order to obtain the transition frequency from the 2S hyperfine centroid to the 4P fine structure
centroid (see fig. S1), the measured transition frequencies ν1/2 and ν3/2 have to be corrected for
the hyperfine shift of the 2SF=0

1/2 , 4PF=1
1/2 and 4PF=1

3/2 states (table II in (38))

∆νHFS(2SF=0
1/2 ) = −133 167.6257(51) kHz, (S13)

∆νHFS(4PF=1
1/2 ) = +1848.8(1) kHz, (S14)

∆νHFS(4PF=1
3/2 ) = −1847.7(1) kHz. (S15)
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These shifts have been obtained experimentally (for 2S, see (59)) and by extrapolation to higher
n and include a small off-diagonal term of ∆νo.d.

HFS = ±0.313 kHz for the 4P states. The transition
frequency from the 2S hyperfine centroid to the 4P fine structure centroid, ν2S−4P (Eq. 9 in the
main text), is obtained by a weighted average of the hyperfine centroids

ν2S−4P =
1

3

(
ν1/2 −∆νHFS(4PF=1

1/2 )
)

+
2

3

(
ν3/2 −∆νHFS(4PF=1

3/2 )
)

+ ∆νHFS(2SF=0
1/2 )

=
1

3
ν1/2 +

2

3
ν3/2 − 132 552.092(75) kHz. (S16)

The fine structure splitting ∆νtheo
FS (4P) of the 4PF=1

1/2 and 4PF=1
3/2 states may readily be ob-

tained from the difference in the total binding energies of the 4PF=1
1/2 and 4PF=1

3/2 states given in
table IV in (38)

∆νtheo
FS (4P) = 1 367 433.3 (3) kHz. (S17)
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Supplementary figures
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Figure S1: Hydrogen 2S-4P level scheme (not to scale). The transition frequencies of the
2SF=0

1/2 -4PF=1
1/2 (ν1/2) and 2SF=0

1/2 -4PF=1
3/2 (ν3/2) transition are experimentally determined. The

transition frequency from the 2S hyperfine structure centroid to the 4P fine structure cen-
troid, ν2S−4P, is determined by combining ν1/2 and ν3/2 and correcting for the hyperfine shifts
∆νHFS(2SF=0

1/2 ), ∆νHFS(4PF=1
1/2 ) and ∆νHFS(4PF=1

3/2 ). The fine structure splitting ∆νFS(4P) corre-
sponds to the energy difference of the 4PF=1

1/2 and 4PF=1
3/2 states.
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Supplementary tables

Table S1: List of quadratic coefficients for the dc-Stark effect for the relevant atomic levels and
different orientations of the static electric field ~F with respect to the laser polarization ~E.

Level Orientation of ~F aj,mF
(Hz/(V/m)2)

4PF=1
1/2

~F ‖ ~E -97

4PF=1
1/2

~F ⊥ ~E -83

4PF=1
3/2

~F ‖ ~E 186

4PF=1
3/2

~F ⊥ ~E -1354

Table S2: List of corrections ∆ν and uncertainties σ for the determination of the 2SF=0
1/2 -4PF=1

1/2

(ν1/2) and 2SF=0
1/2 -4PF=1

3/2 (ν3/2) transition frequencies and the correlation coefficient r of the
uncertainties for the two transitions.

Contribution 2SF=0
1/2 -4PF=1

1/2 (ν1/2) 2SF=0
1/2 -4PF=1

3/2 (ν3/2)
Correlation
coefficient

∆ν (kHz) σ (kHz) ∆ν (kHz) σ (kHz) r

Statistics 0.00 0.48 0.00 0.56 0
First-order Doppler shift 0.00 2.92 0.00 2.84 0
Quantum interference shift 0.00 0.33 0.00 0.26 0
Light force shift -0.43 0.40 -0.26 0.25 1
Model corrections 1.34 0.23 -0.50 0.10 -0.65
Sampling bias -0.34 0.40 0.83 0.70 0
Second-order Doppler shift 0.22 0.05 0.22 0.05 1
dc-Stark shift 0.00 0.03 0.00 0.30 0
Zeeman shift 0.00 0.07 0.00 0.33 0
Pressure shift 0.00 0.01 0.00 0.03 1
Laser spectrum 0.00 0.10 0.00 0.10 1
Frequency standard (hydrogen maser) 0.00 0.06 0.00 0.06 1
Recoil shift -837.23 0.00 -837.23 0.00 n/a

Total -836.4 3.0 -836.9 3.0 0.011
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Table S3: List of corrections ∆ν and uncertainties σ for the determination of the 4P fine struc-
ture splitting ∆νexp

FS (4P).

Contribution ∆ν (kHz) σ (kHz)

Statistics 0.00 0.74
First-order Doppler shift 0.00 4.07
Quantum interference shift 0.00 0.42
Light force shift 0.17 0.15
Model corrections -1.84 0.30
Sampling bias 1.17 0.81
Second-order Doppler shift 0.00 0.00
dc-Stark shift 0.00 0.30
Zeeman shift 0.00 0.34
Pressure shift 0.00 0.02
Laser spectrum 0.00 0.10
Frequency standard (hydrogen maser) 0.00 0.06
Recoil shift 0.00 0.00

Total -0.5 4.3
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