Nucleon and nuclear structure from muonic and normal atoms

Randolf Pohl

Johannes Gutenberg Universität Mainz

STR STR **S**NG-**2**

Ex5a 21 October 2021

111 281280

DFG

Nuclear rms charge radii

from measurements with electrons

Neutron number N

sources: * p,d: CODATA-2014

- * t: Amroun et al. (Saclay) , NPA 579, 596 (1994)
- * ^{3,4}He: Sick, J.Phys.Chem.Ref Data 44, 031213 (2015)
- * Angeli, At. Data Nucl. Data Tab. 99, 69 (2013)

Nuclear radii

- the Standard Model
- * Fundamental constants (CODATA)

Nuclear radii

Atomic spectroscopy

Scattering

experiments

Fundamental constants

electron higher vs muon moments Radii TPE subtraction

Form factors

structure functions

polarizabilities

function Hadron/ Nuclear theories

adapted from A. Antognini

The "Proton Radius Puzzle"

Measuring R_p using electrons: 0.88 fm (+- 0.7%) using muons: 0.84 fm (+- 0.05%)

μd 2016: RP et al (CREMA Coll.) Science 353, 669 (2016) μp 2013: A. Antognini, RP et al (CREMA Coll.) Science 339, 417 (2013)

The "Proton Radius Puzzle" Measuring R_{p} using electrons: 0.88 fm (+- 0.7%) using muons: 0.84 fm (+- 0.05%) THE INTERNATIONAL WEEKLY JOURNAL OF SCIENCE 0.88 fr naure 0.84 fm μ**d 2016** 5.6 o **OIL SPILLS** μ**p 2013** There's more to come PLAGIARISM It's worse than you think **CHIMPANZEES** The battle for survival μ**p 2010** New value from exotic atom trims radius by four per cent 0.87 0.83 0.85 0. 0.84 0.86

μd 2016: RP et al (CREMA Coll.) Science 353, 669 (2016) μp 2013: A. Antognini, RP et al (CREMA Coll.) Science 339, 417 (2013)

The "Proton Radius Puzzle"

Measuring R_p using electrons: 0.88 fm (+- 0.7%) using muons: 0.84 fm (+- 0.05%)

μd 2016: RP et al (CREMA Coll.) Science 353, 669 (2016) μp 2013: A. Antognini, RP et al (CREMA Coll.) Science 339, 417 (2013)

The "Proton Radius Puzzle"

Service world-wide

Measuring

THE INTERNATIONAL WEEKLY JOURNAL OF SCIENCE nature

OIL SPILLS There's more to come PLAGIARISM It's worse than you think **CHIMPANZEES** The battle for survival

'%)

5%)

New value from exotic atom

trims radius by four per cent

Ehe New York Eim

µd 2016: RP et al (CF µp 2013: A. Antognini

A "Proton Radius **Puzzle**" ??

1871 – 1937 Nobel prize 1908

1871 – 1937 Nobel prize 1908 Rutherford shoots alpha particles onto a thin gold foil

Most alpha particles pass the thin gold foil unaffected.

A few are however deflected at large angles.

The Atom is a

1871 – 1937 Nobel prize 1908

very small, heavy, positively charged Nucleus

orbited by negatively charged **Electrons**

 $^{14}N + \alpha \rightarrow ^{17}O + p$

Rutherford achieves first man-made nuclear reaction.

Thereby he discovers the **Proton**.

 $^{14}N + \alpha \rightarrow ^{17}O + p$

Rutherford achieves first man-made nuclear reaction.

Thereby he discovers the **Proton**.

104 years of the proton !!!

Proton: Ernest Rutherford (1917)

Electron: Joseph John Thomson (1897)

Proton: Ernest Rutherford (1917)

Electron: Joseph John Thomson (1897)

Proton: Ernest Rutherford (1917)

Neutron: James Chadwick (1932) At the same time: **Deuterium!** (Urey 1932)

Proton – >>3 Quarks

proton

Proton – >>3 Quarks

Proton – >>3 Quarks

Robert Hofstadter – 1955

1915 – 1990 Nobel prize 1961

Robert Hofstadter – 1955

Scattering of (negatively charged) Electrons off (positively charged) Protons.

1915 – 1990 Nobel prize 1961

Robert Hofstadter – 1955

The Proton has a diameter of " $0,7 \cdot 10^{-13}$ cm"

Mainzer Microtron MAMI

Mainzer Microtron MAMI

How large is a Proton?

Hydrogen

<u>One</u> Proton, orbited by <u>one</u> Electron.

Nils Bohr

1885 – 1962 Nobel prize 1922 <u>One</u> Proton, orbited by <u>one</u> Electron.

Nils Bohr

1885 – 1962 Nobel prize 1922 <u>One</u> Proton, orbited by <u>one</u> Electron.

One Proton, orbited by one Electron.

Nils Bohr

1885 – 1962 Nobel prize 1922

- Discrete orbits
- "Quantum leaps"

The Hydrogen Atom

<u>One</u> Proton, orbited by <u>one</u> Electron.

The Hydrogen Atom

<u>One</u> Proton, bound to <u>one</u> Electron.

The Hydrogen Atom

<u>One</u> Proton, bound to <u>one</u> Electron.

18 -----

1S -

Electron probability density (Square of the wave function)

Electron probability density (Square of the wave function)

1S ·

$$E_n \approx -\frac{R_\infty}{n^2}$$

1

Bohr formula

1

Rydberg constant

$$E_n \approx \frac{R_\infty}{n^2}$$

Bohr formula

3S ----- 3D

2S — 2P

Rydberg constant

$$E_n = \frac{R_{\infty}}{n^2} + \frac{1.2 MHz}{n^3} \langle r^2 \rangle \delta_{l0} + \Delta(n,l,j)$$

RP et al., Metrologia 54, L1 (2017)

RP et al., Metrologia 54, L1 (2017)

Nuclear charge radius from atoms

willk. Einh.

Nuclear charge radius from atoms

willk. Einh.

Muonic Hydrogen

A proton, orbited by a **negative muon**.

What is

Carl David Anderson Seth Neddermeyer Nobel prize 1936 (for the Positron!)

The Muon and its place in the Universe

Electronic and muonic atoms

Regular hydrogen:

Proton + Electron

Muonic hydrogen:

Proton + Muon

Muon **mass** = **200** * electron mass

Bohr radius = 1/200 of H

200³ = a **few million times** more sensitive to proton size

muon

Vastly not to scale!!

Muonic Hydrogen

1S

2S state: μ spends some time **inside** the proton! State is sensitive to the proton size.

- * Muons stop in H₂
- * Capture into high states with n~14
- * Cascade to lower n

* Muons stop in H_2

- * Capture into high states with n~14
- * Cascade to lower n

- * 99% end in 1S groundstate
- * X-ray photons

* Muons stop in H_2

- * Capture into high states with n~14
- * Cascade to lower n

- * 99% end in 1S groundstate
- * X-ray photons

* Muons stop in H_2

- * Capture into high states with n~14
- * Cascade to lower n

* 1% end in long-lived 2S state

"prompt" (t=0):

- * Muon capture into n~14
- * Cascade
- * 99% end in ground state
- \rightarrow "prompt" X-ray photons

$$n \sim 14 - \frac{1\%}{99\%} - 2P$$

$$2S - 2 keV \gamma$$

$$1S - \frac{1}{2} keV \gamma$$

"prompt" (t=0):

- * Muon capture into n~14
- * Cascade
- * 99% end in ground state
- \rightarrow "prompt" X-ray photons

"delayed" (t ~ 1μ s):

- * 1% of the Muons in 2S state
- * Laser on resonance (λ =6 μ m)
- * 2S \rightarrow 2P \rightarrow 1S
- \rightarrow "delayed" X-ray photons

Paul Scherrer Institute

Paul Scherrer Institute

Experimental Hall

Experimental Hall from above

Experimental Hall from above

Beam Area πE5

Beam Area πE5

Beam Area πE5

Our Muon Beam inside $\pi E5$

Getting ready....

Muon Beam Setup inside $\pi E5$

The Laser System

Yb:YAG Thin-Disk laser \rightarrow quick response to μ

Frequency doubling (SHG) → green light to pump Ti:sapphire crystals

Ti:sapphire cw laser → controls laser wavelength

Ti:sapphire oscillator/amplifier \rightarrow large pulse energy (15 mJ)

Raman cell

 \rightarrow 3fold wavelength change \rightarrow 6 µm

Target Cavity → Mirror system surrounds muon stop volume

Yb:YAG Oscillator

Yb:YAG Amplifier

Light through the Tube

Muon beam movie

The Laser System

Yb:YAG Thin-Disk laser \rightarrow quick response to μ

Frequency doubling (SHG) → green light to pump Ti:sapphire crystals

Ti:sapphire cw laser

 \rightarrow controls laser wavelength

Ti:sapphire oscillator/amplifier → large pulse energy (15 mJ)

Raman cell

 $\rightarrow\,$ 3fold wavelength change $\rightarrow\,$ 6 μm

Target Cavity → Mirror system surrounds muon stop volume

Yb:YAG Oscillator

Yb:YAG Amplifier

Light through the Tube

Time Spectra

13 hours of data

Time Spectra

Time Spectra

Resonance search movie

The resonance line

Yeah!

Theory in muonic H

2 transitions in muonic H

Theory in muonic H

Theory in muonic H

Muonic Deuterium

Muonic Deuterium

muonic

electronic

H/D 1S-2S. Parthey, RP et al., PRL 104, 233001 (2010), PRL 107, 203001 (2011)

Theory in muonic D

(1) charge radius, using calculated TPE

- r_{d} (µD) = 2.12717 (13) $_{exp}$ (82) $_{theo}$ fm vs.
- r_{d} (CODATA-14) = 2.1**4**130 (250) fm

(2) polarizability, using charge radius from isotope shift

$$\Delta E_{TPF}$$
 (theo) = 1.7500 (210) meV vs.

 ΔE_{TPE} (exp) = 1.7591 (59) meV 3.5x more accurate

Krauth et al. (2016) + Pachucki et al. (2018) + Hernandez et al. (2018) + Kalinowski (2018)

Hydrogen

Energy levels of hydrogen

Rp from H spectroscopy

RP et al., Metrologia 54, L1 (2017)

Garching H(2S-4P)

Beyer, Maisenbacher, RP et al, Science 358, 79 (2017)

1st order Doppler shift

Quantum interference shifts

Sansonetti et al., PRL 107, 021001 (2011) Brown et al., PRA 87, 032504 (2013)

Quantum interference shifts

Fitting this with 2 Lorentzians creates

line shifts

= Lorentzian(1) + Lorentzian(2)

+ cross-term (QI)

see

Horbatsch, Hessels, PRA 82, 052519 (2010); PRA 84, 032508 (2011); PRA 86 040501 (2012) Sansonetti et al., PRL 107, 021001 (2011) Brown et al., PRA 87, 032504 (2013)

Studying QI in 2S-4P

QI in hydrogen ($\Delta = 100 \Gamma$)

Beyer, Maisenbacher, RP et al, Science 358, 79 (2017)

Systematics

Contribution	∆ v (kHz)	σ (kHz)
Statistics	0.00	0.41
First-order Doppler shift	0.00	2.13
Quantum interference shift	0.00	0.21
Light force shift	-0.32	0.30
Model corrections	0.11	0.06
Sampling bias	0.44	0.49
Second-order Doppler shift	0.22	0.05
dc-Stark shift	0.00	0.20
Zeeman shift	0.00	0.22
Pressure shift	0.00	0.02
Laser spectrum	0.00	0.10
Frequency standard (hydrogen maser)	0.00	0.06
Recoil shift	-837.23	0.00
Hyperfine structure corrections	-132,552.092	0.075
Total	-133,388.9	2.3

The "Proton Radius Puzzle"MuonsElectrons

New Measurements: Garching 2S-4PMuonsElectrons

New Measurements: Paris 1S-3S Muons Electrons

Lamb shift

We are using a new Frequency-offset SOF technique (FOSOF) (AC Vutha and EA Hessels Phys. Rev. A052504 (2015))

Bezginov et al., Science 365, 1007 (2019) Hessels group (York U, Toronto)

New Measurements: Toronto 2S-2PMuonsElectrons

Mainzer Microtron MAMI

Electron scattering

Mainz MAMI data 2010

Vanderhaeghen, Walcher: 1008.4225

PRad @ Jefferson Lab

no magnetic spectrometer angle 0.7-7° (0.002 large Q² range in one setting windowless cryogenic gas target

Xiong et al., Nature 575, 147 (2019)

New Measurements: PRad Old value Muons PRad e-p 2019 hydrogen (2S-2P) Toronto 2019 hydrogen (1S-3S) hydrogen (2S-4P) Paris 2018 Garching 2017 CODA<u>T</u>A-2018 CODATA-2014 5.6 σ µD 2016 hydrogen µH 2013 (pre-2016) electron scattering µH 2010 (pre-2014) 0.86 0.83 0.840.85 0.87 0.89 0.88 proton charge radius R [fm] Xiong et al. (PRad), Nature 575, 147 (2019)

Garching H(1S-3S)

• cryogenic H beam (6 K)

Grinin, Matveev,.. RP et al, Science, next week

H(1S-3S) Garching 2020 Muons Old value

New Mainz electron accelerator MESA

Kurt Aulenbacher

MESA — "Mainz Energy-Recovering Superconducting Accelerator

Being built on Campus of JGU Mainz

MAGIX: windowless (gas-jet) target, lowest Q²

Muonic Helium

Krauth et al. (CREMA), Nature (2021)

Measured

muonic ⁴He ions

 $R(^{4}He) = 1.67824 (13)_{exp} (82)_{theo} fm$

Krauth, RP et al. (CREMA Coll.) Nature 589, 527 (2021)

Theory: Diepold et al., Ann. Phys. (2018) incl. 3-photon nuclear polarizability (Pachucki, 2018)

muonic ⁴He ions

 $R(^{4}He) = 1.67824 (13)_{exp} (82)_{theo} fm$

Krauth, RP et al. (CREMA Coll.) Nature 589, 527 (2021)

Theory: Diepold et al., Ann. Phys. (2018) incl. 3-photon nuclear polarizability (Pachucki, 2018)

Impact of μ^4He^+ measurements

Few-nucleon theories

- r_{α} represents a benchmark for fewnucleon theories.
- r_α can be used also to fix a low-energy constant of nuclear potential.
- r_α improves ⁶He and ⁸He radii

Müller, Lu

BSM physics

 Agreement constrains BSM models suggested to explain the R_p puzzle

Udem, MPQ Eikema, LaserLab

Combined with upcoming He⁺ (He) exp.

- bound-state QED test He⁺(1S-2S):
 60 kHz, u_r = 6x10⁻¹²
- Rydberg constant: 24 kHz
- 2PE+3PE in µHe with 0.1 meV uncertainty

from A. Antognini

Conclusions

Muonic atoms / ions provide:

• ~10x more accurate charge radii, when combined with

calculated polarizability

Conclusions

Muonic atoms / ions provide:

• ~10x more accurate charge radii, when combined with

The New Hork Times
Intermediate conclusions

Muonic atoms / ions provide:

• ~10x more accurate charge radii, when combined with

calculated polarizability

• few times more accurate **nuclear polarizability**,

when combined with charge radius from regular atoms

Muonic atoms are a novel tool for proton and new-nucleon properties!