
Ex5a
Exercise 3

When we derived the solution to the hydrogen problem using the Schrödinger equation,
we assumed the nucleus (proton) to be a non-moving object with infinite mass. For the
hydrogen the proton mass really is negligible. But to be correct we have to use the
reduced mass µ = mpme

mp+me
including masses of proton and electron. This leads to slightly

different solutions
Ψnlm(r, ϑ, ϕ) = Rnl(r)Ylm(ϑϕ)

where
• Rnl(r) =

√(
2Z
na0

)3 (n−l−1)!
2n(n+l)! e

−ρ/2ρlL2l+1
n−l−1(ρ),

• ρ = 2Zr
na0

(where a0 = 4πε0~2

µe2 is the atom’s Bohr radius),
• L2l+1

n−l−1(ρ) are the generalized Laguerre polynomials,
• Ylm(ϑϕ) are the spherical harmonics.

1 Exotic hydrogen like systems
Exotic atoms are atoms in which the electron or the nucleus is substituted by another
negative or positive particle. In this exercise we want to investigate how hydrogen like
systems scale with atomic number Z and the masses of the shell particle and the nucleus.

1. First of all, we consider a hydrogen atom in which the electron is substituted by a
muon (µ−). The muon is the heavy ‘brother’ of the electron, it is approximately 206
times as heavy. Because of its high mass, it only exists for roughly 2 µm, before
decaying into one electron and two neutrinos. Muonic hydrogen is produced by
shooting a muon beam into hydrogen gas. The muons are decelerated by Coulomb
interaction and subsequently kick out the shell electron and replace it. The muon
predominantly occupies orbitals with the same energy as the previously bound
electron.

(i) Assume that the hydrogen atoms were in their ground state. Which quantum
number n of muonic hydrogen (pµ−) does this correspond to? Give a general
equation for the most probable n as a function of the particle’s mass.

(ii) The so formed muonic atom deexcites to the ground state and emits a photon.
What is this photon’s energy?
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(iii) Assume the proton to be a hard sphere of radius Rp. How much larger is
the probability of finding a muon within the proton (for ground state only)
compared to finding an electron within the proton in regular hydrogen?

2. A muon is captured by a lead atom and deexcites to the ground state by emitting
X-ray photons.

(i) What is the radius of the first Bohr orbit?
(ii) How strongly will an 1s electron in lead shield the lead nucleus’ charge against

the muon? Calculate the probability of finding the 1s electron within the
radius of the first Bohr orbit of the muon?

3. Another important system is positronium (e+e−). It is a bound state of an electron
and its antiparticle: the positron.

(i) What is the binding energy of ground state positronium?
(ii) In ground state positronium (angular momentum l = 0) the spins of both

particles couple trough dipole-dipole interaction because each particle is a
magnetic dipole. What total angular momenta (total spins) can form?

2 Coupling of angular momentum and spin
A circular current with angular momentum ~L creates a magnetic field. Electrons that
orbit a nucleus form such a current. Additionally, they also have a spin ~S resulting in
a magnetic dipole moment. The interaction between the self-induced magnetic field and
the magnetic dipole leads to a Hamiltonian

ĤLS = 1
4πε0

Ze2

2m2c2
1
r3

(
~̂L · ~̂S

)
,

the spin-orbit coupling.
The base functions

Ψn,l,m,ms=+1/2 = Rn,lYl,m

(
1
0

)

Ψn,l,m,ms=−1/2 = Rn,lYl,m

(
0
1

)
are to be transformed into a system with j2, l2, s2, Mj :

|J,MJ , l, s〉 =
∑

ms=±1/2
〈l,m, s,ms|J,MJ〉 |l,m, s,ms〉

MJ = mj1 +mj2

The Clebsch-Gordan coefficients 〈j1,mj1 ,
1
2 ,mj2 |J,MJ〉 for the coupling of an angular

momentum (j1,mj1) and a spin (1/2,mj2 = ±1/2) to the total angular momentum
(J,MJ) are given as:
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J mj2 = +1
2 mj2 = −1

2

j1 + 1
2

(
j1+MJ + 1

2
2j1+1

)1/2 (
j1−MJ + 1

2
2j1+1

)1/2

j1 − 1
2 −

(
j1−MJ + 1

2
2j1+1

)1/2 (
j1+MJ + 1

2
2j1+1

)1/2

(a) Show that you can write the base functions for MJ = m+ 1/2 as:

Ψ̄n,l,j=l+1/2,ms
=

√
l+m+1

2l+1 Rn,lYl,m

(
1
0

)
+
√

l−m
2l+1Rn,lYl,m+1

(
0
1

)

Ψ̄n,l,j=l−1/2,ms
= −

√
l−m
2l+1Rn,lYl,m

(
1
0

)
+
√

l+m+1
2l+1 Rn,lYl,m+1

(
0
1

)

(b) Calculate the product ~L · ~S = LxSx + LySy + LzSz, where

Sx = ~
2

(
0 1
1 0

)
Sy = ~

2

(
0 −i
i 0

)
Sy = ~

2

(
1 0
0 −1

)

Use L± = Lx ± iLy with L±Yl,m = ~
√
l(l + 1)−m(m± 1)Yl,m±1.

(c) Calculate the eigenvalue a of ~L · ~S |J,MJ , l, s〉 = a |J,MJ , l, s〉 for j = l± 1/2 using
the functions of problem (a).

(d) Compare the results to the eigenvalues of ~L · ~S = 1
2(J2 −L2 − S2) for j = l± 1/2.
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