
Ex5a
Exercise 2

1 Relativistic Effects in the H-Atom
The Darwin term

ĤDarwin = − ℏ2

4m2c2 eE⃗ · ∇⃗

describes a relativistic correction to the energy levels of the hydrogen atom due to
the Zitterbewegung. Other corrections are the relativistic mass effect and the spin-orbit
coupling.

(a) Specify the electric field E⃗ of a point-like charge and the nabla operator ∇⃗ in
spherical coordinates.

(b) Show using first order error propagation ∆E = ⟨Ψ | ĤDarwin |Ψ⟩ that the energy
shift is given by

∆E = πℏ2

2m2c2
Ze2

4πϵ0
|Ψ(0)|2,

where Ψ is the solution of the undisturbed hydrogen Schrödinger equation.

(c) What is the consequence of the factor |Ψ(0)|2? Which energy levels are shifted by
the Darwin term?

Hints: • Remember the separation of radial and angular coordinates.
• Which component is affected by the derivation of the Darwin term?
• Keep in mind that the wave functions are orthonormalized.
• ∂

∂x (f(x))2 = 2f(x) ∂
∂xf(x)

2 Klein-Gordon and Dirac Equation

The Schrödinger equation uses the classical energy-momentum relation E = p⃗2

2m + V (x⃗)
and substitutes p⃗ and E for their respective momentum and energy operators ˆ⃗p and Ĥ.

(a) Use the relativistic energy-momentum relation

E2 = p2c2 + m2c4
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to develop the Klein-Gordon equation in analogy to the Schrödinger equation.

(b) The Klein-Gordon equation treats time and space in the same manner by incorpo-
rating both as second derivatives. Paul Dirac tried to find an equation with first
derivatives only. In 1928 he developed the Dirac equation

ĤΨ = (cα⃗ ◦ ˆ⃗p + βmc2)Ψ.

Determine the constraints on α⃗ and β so that the Dirac equation satisfies the
relativistic energy-momentum relation by applying Ĥ a second time (see lecture).

(c) Show that these conditions cannot be fulfilled if αi or β are simple complex num-
bers.

(d) We want Ĥ = Ĥ† to be hermitian. Therefore αi and β have to be hermitian. What
are their eigenvalues?

(e) Show that αi and β are traceless. What does this mean for their dimension?

3 Radial Expectation Values for Hydrogen
(a) By brute force, using generating functions for Laguerre polynomials, show that

mean radius a one-electron atom in the hydrogenic orbital |n, l, m⟩ is

⟨r⟩nl = n2 a0
Z

[
1 + 1

2

(
1 − l(l + 1)

n2

)]
(independent of q-number m

)

(b) For ”circular” states (the ones with zero radial momentum, nr = 0 ), and in the
”correspondence limt” ( n → ∞) show that we retrieve Bohr’s result,

⟨r⟩ → n2 a0
Z

Though any expectation value can be calculated by tedious method in part (a),
a trick to due Feyman and Hellman, saves a lot of work (note this was part of
Feyman’s undergrad thesis!). The radial Hamiltonian is a function of various ”pa-
rameters”, me, e, l ≡ ξ,

Ĥ (me, e, l) = −ℏ2

2me

d2

dr2 + ℏ2l(l + 1)
2mer2 − Ze2

r

Mathematically, is well defined for arbitrary assignment or real numbers to any ξ.

(c) Defining the radial eigenstate as Ĥ(ξ) |nr, ξ⟩ = Enr (ξ) |nr, ξ⟩ = − 1
2(nr+l+1)2

Z2me4

ℏ2 |nr, ξ⟩,

show that
〈

nr, ξ

∣∣∣∣∂Ĥ(ξ)
∂ξ

∣∣∣∣ nr, ξ

〉
= ∂Enr (ξ)

∂ξ (Feyman-Hellman theorem)

(d) Using the Feynman-Hellman theorem, show that
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a)
〈

1
r

〉
n,l

= Z
a0n2 (use ξ = e2 ). Relate this to the Viral Theorem.

b)
〈

1
r2

〉
n,l

= Z2

a2
0

1
n3(l+1/2) (use ξ = l ).

c)
〈

1
r3

〉
n,l

= Z
a0

1
l(l+1)

〈
1
r2

〉
n,l

.

For this final case prove and then use the expectation value of the com-
mutator, 〈[

d

dr
, Ĥ(ξ)

]〉
nl

= 0
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