Ex5a

Exercise 7

7.1 Lasers

In the lecture you learned about the different types of lasers. In this exercise you will do your own research on the following types of lasers:

- a) Diode lasers,
- b) Nd:YAG lasers,
- c) TiSa lasers,
- d) Alexandrite lasers
- e) Dye lasers,
- f) Excimer lasers.

Give typical powers and pulse energies, pulse lengths, pulse repetition rates. Give the tuning ranges (if applicable).

7.2 The Two Level System

Assume a system of N idealized atoms with two non-degenerate states. A light source emits photons of energy $E = \hbar \omega_{12}$ which is exactly the energy difference between the ground state $|1\rangle$ and the excited state $|2\rangle$.

- a) What are the possible transitions between the states? Make a sketch.
- b) Describe $\dot{N}_1 = \frac{\partial N_1}{\partial t}$ and $\dot{N}_2 = \frac{\partial N_2}{\partial t}$ using Einstein coefficients. Here, N_1 and N_2 are the numbers of atoms in the corresponding state.
- c) In the case of equilibrium $(\dot{N}_1 = \dot{N}_2 = 0)$, what is $\Delta N = N_2 N_1$? Plot $\frac{\Delta N}{N}$ as a function of the coefficient A (pumping power). Could you build a laser with this system?

7.3 The Three Level System

Assume a system of N idealized atoms with three non-degenerate states. A light source emits photons of energy $E = \hbar \omega_{13}$ which is exactly the energy difference between the ground state $|1\rangle$ and the upper excited state $|3\rangle$. The lower excited state $|2\rangle$ lies between $|1\rangle$ and $|3\rangle$.

- a) What are the possible transitions between the states? Make a sketch.
- b) Describe $\dot{N}_1 = \frac{\partial N_1}{\partial t}$, $\dot{N}_2 = \frac{\partial N_2}{\partial t}$ and $\dot{N}_3 = \frac{\partial N_3}{\partial t}$ using Einstein coefficients. Here, N_1 , N_2 and N_3 are the numbers of atoms in the corresponding state.
- c) Assume B_{32} to be larger than B_{21} and much larger than B_{31} . In the case of equilibrium $(\dot{N}_1 = \dot{N}_2 = \dot{N}_3 = 0)$, what is $\Delta N = N_2 - N_1$? Plot $\frac{\Delta N}{N}$ as a function of the coefficient A (pumping power). Could you build a laser with this system?