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Quantum Interference Line Shifts of Broad Dipole-Allowed
Transitions

Thomas Udem,* Lothar Maisenbacher, Arthur Matveev, Vitaly Andreev, Alexey Grinin,
Axel Beyer, Nikolai Kolachevsky, Randolf Pohl, Dylan C. Yost, and Theodor W. Hänsch

High-resolution laser spectroscopy serves the purpose of determining the
energy difference between states of atoms and molecules with the best
possible accuracy. Therefore, one may face the problem of finding the center
of a symmetric line within a small fraction of the line width, or one needs to
extract the energy difference from an asymmetric line without a uniquely
defined center. Multiplets of atomic resonance lines are subject to mutual line
pullings and give rise to asymmetric line distortions due to quantum
interference. This paper reviews the treatment of these distortions for
dipole-allowed one-photon transitions. Specific examples are given for
hydrogen and helium spectroscopy.

1. Introduction

Precise experimental values for energy levels in atomic and
molecular systems are needed for testing fundamental physics,
comparing atomic clocks and for realizing the new International
System of Units (SI).[1] The latter has no more artifacts. It de-
fines most of the units by fixing non-dimensionless constants
and thereby removing real objects (natural or artificial) from the
definitions. With the new SI, the only remaining reference to an
existing object is to the Cs atom, or more precisely to the differ-
ence between its ground state hyperfine energy levels. The line
splitting, that is, the uncertainty of energy difference in units of
line width has reached parts in 106. Any other unit (except for the
mole) now hinges on this transition.[2]

The next amendment of the SI will most likely be the replace-
ment of the Cs transition with an optical transition to represent
the second.[3] In the future, it may even be conceivable to relate
the SI second to a computable atomic transition by fixing one
final non-dimensionless constant, say the mass of the electron
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me . In that case, the Rydberg constant
R∞ = α2mec/2h will only have fixed non-
dimensionless constants and one dimen-
sionless constant, the fine structure con-
stant α. Unfortunately, the fine structure
constant cannot be calculated yet, despite
interesting speculations.[4] All atomic and
molecular energy levels are given by the
Rydberg constant that multiplies a di-
mensionless theoretical expression. Due
to its simplicity, that theoretical expres-
sion is best known for atomic hydrogen
and hence a “computable clock” would
make use of this system.

An essential tool for this endeavour is precision spectroscopy
tomeasure or represent the difference between energy levels that
is not necessarily the center of the observed line. Besides fixing
or determining constants, the test of quantum electrodynamics
(QED) calculations requires precision spectroscopy as well. In
that case however, two or more independent measurements are
required to check for consistency.[5] Since there is only onemetro-
logically relevant narrow line in atomic hydrogen (the 1S–2S tran-
sition), one has to determine the transition energy from a typical
MHz wide line to within an uncertainty at the kHz level. This is
a severe challenge that sets the current limit on testing QED and
determining the values of natural constants such as the charge
radius of the proton.[6]

Quite similar, the fine structure constant may be determined
from the measurement of the electron g factor if one believes in
QED calculations of this dimensionless constant.[7] To test QED,
one needs at least one more independent measurement of the
fine structure constant, say by determining atomic recoil[8,9] or
by measuring difference of energy levels in helium.[10–13] Again,
a wide line width transition has to be analyzed.
The purpose of this contribution is to review quantum inter-

ference (also referred to as cross damping) as a commonly ob-
served but often ignored line distortion that may occur in high-
resolution laser spectroscopy, in particular when analyzing wider
lines. This effect has first been described by F. Low in 1952 in or-
der to analyze the natural line shape for the determination of the
Lamb shift.[14] In this work, we summarize our work on atomic
hydrogen; however, we keep the derivations general, so that it can
be readily applied to any other atom. In contrast to earlier works
(see, e.g., ref. [15]), we use perturbation theory (see, e.g., ref. [16]).
This approach has the advantage of producing analytic line shape
functions that can be fitted to experimental data, but can not eas-
ily be used to include saturation or pumping phenomena as well
as temporally modulated excitation such as the Ramsey scheme.

Ann. Phys. (Berlin) 2019, 1900044 C© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim1900044 (1 of 16)



www.advancedsciencenews.com www.ann-phys.org

Figure 1. Connecting a particular initial state |i 〉 to a particular final state
| f 〉 via indistinguishable paths leads to interference. The laser excitation
takes place with the frequency ωL that is detuned (dashed line) relative
to the excited states |e〉, |e′〉, |e′′〉 · · · . In general, the emitted frequency
ωs is different from the impinging laser frequency unless the initial and
final states are identical, in which case the situation resembles a colocated
ensemble of classical driven oscillators.

The level scheme considered here is the one sketched in
Figure 1. It starts from an initial state |i〉 that is laser excited to |e〉
with subsequent decay to a final state | f 〉. This process can lead
to interference if (and only if) there are several possible paths,
that is, several excited states |e〉, |e ′〉, |e ′′〉 · · · . This interference
phenomenon can lead to line distortion. Note that the initial and
final states do not have to be different states.

2. Classical Toy Model

If the initial and final states are identical, that is, |i〉 = | f 〉, the
system behaves more intuitively as a collection of colocated clas-
sical oscillating dipoles. These dipoles are in forced oscillation
driven by the exciting laser and hence all vibrate at the laser fre-
quency, that is, ωL = ωs . The phase and amplitude response is
given by their susceptibility. In this description, the interference
takes place in the emitted fields instead of between transition
paths within the atom.
For simplicity, we limit the discussion within the classical toy

model to two phased dipole emitters that have resonance fre-
quencies ω0 and ω1 = ω0 + �. We are interested in describing
the “line pulling” that the main resonance at ω0 experiences due
to the presence of a far-detuned resonance atω1 (see Figure 2). By
line pulling, we mean that the center of the line no longer coin-
cides with the transition energy. In particular, we are discussing
asymmetric line distortions that leave the line center as a matter
of definition. For simplicity, we assume for now that both reso-
nances have the same damping constant �. The orientation of
the driven dipoles are given by the vectors �D0 and �D1 that do
not need to be parallel. They add up to the total dipole moment
�D(ωL ). Within this toy model, we do not care how the dipoles �D0

and �D1 are generated. This will be addressed in the quantumme-
chanical treatment in Section 3. With the usual susceptibilities,
the total dipole moment is given by:

�D(ωL ) ∝
�D0

(ωL − ω0)+ i�/2
+

�D1

(ωL − ω0 − �)+ i�/2
(1)

Figure 2. Sketch of the emission spectrum with two excited states. Excita-
tion energies of the two transitions are �ω0 and �(ω0 + �), in close prox-
imity but not exactly equal to the peaks of the spectrum. For simplicity, we
assume here identical widths � and identical dipole moments �D0 = �D1.
The peak or center of the line of interest is pulled by the presence of the
other line away from ω0 in two ways: First (incoherently) because it sits
on the sloping pedestal of the perturbing line (gray) and second (coher-
ently) because of an intriguing interference effect that modifies the spatial
emission pattern in a detuning dependent way. The same arguments can
be made for the other line.

Placed at the origin, it generates a far-field electric field at position
�r that is given by

�E (�r ) ∝
(
�r × �D(ωL )

)
× �r eiωL t−ikL r

r 3
(2)

such that the detected intensity, that is proportional to the square
modulus of the field, is given by

I(�r , ωL ) ∝ r 2| �D(ωL )|2 − | �D(ωL ) · �r |2
r 4

∝ | �D(ωL )|2
(
1− cos(β)2

)
(3)

The last term expresses the dipole characteristic in terms of the
angle β between �D(ωL ) and �r . At this point, we do not care
about the 1/r 2 roll-off of the total intensity with distance. Only
the shape of the line should matter here. Since both, the ampli-
tude and the direction of the total dipole �D(ωL ) depends on the
laser frequency, this angle varies as the laser is tuned over the
resonances. Hence, for a fixed position of the detector we expect
line distortions.
In the quantum mechanical treatment, the relative orienta-

tions between the dipoles is no longer a continuous variable. It
will turn out, in this case, that the (1− cos(β)2) term does not de-
pend on laser detuning. Therefore, wewill also ignore this depen-
dence for the toy model and assume that the observed spectrum
is given by

|D(ωL )|2 ∝ D2
0

δ2 + (�/2)2
+ D2

1

(δ − �)2 + (�/2)2

+ 2 �D0 · �D1
δ(δ − �)+ (�/2)2(

δ2 + (�/2)2
)(
(δ − �)2 + (�/2)2

) (4)

Here, we have introduced the laser detuning δ = ωL − ω0 to
highlight the symmetry of this expression.[17] Equation (4)
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consists of two Lorentzians and a non-Lorentzian cross term.
As we will see, the latter term vanishes relative to the two
Lorentzians for �/� → 0. Therefore it is usually referred to as
“cross damping” instead of “quantum interference” in this con-
text. The cross term is often ignored when fitting experimentally
obtained spectra. However, both the second and third terms will
give rise to a systematic error of the main lines energy differ-
ence (first term) if an incomplete fitting function is used. The
second term takes into account that the main resonance sits on
the pedestal of the perturbing resonance, which appears as an
approximately linear background. We call this incoherent line
pulling, because it can also be obtained by simply adding the in-
tensities of the two lines. The last term is due to interference be-
tween the emissions of the two components and hence we refer
to it as coherent line pulling.

2.1. Large Line Separation

For a sufficiently large spectral separation of the two resonances
(� 	 �), the full line shape can be expanded around the reso-
nance of interest, that is, for δ 
 �.[18] Therefore, the first term
in (4) is treated as the main resonance and the other terms are
expanded. For the second term, we find an approximately linear
background with

D2
1

�2 + (�/2)2
+ 2D2

1�

(�2 + (�/2)2)2
δ + · · · ≈ D2

1

�2
+ 2D2

1

�3
δ (5)

For the third term in (4), we keep the Lorentzian factor and ex-
pand the remainder around δ ≈ 0:

2 �D0 · �D1

δ2 + (�/2)2

(
(�/2)2

�2 + (�/2)2
− �(�2 − (�/2)2)

(�2 + (�/2)2)2
δ + · · ·

)

≈ 2 �D0 · �D1

δ2 + (�/2)2

(
(�/2)2

�2
− δ

�

)
(6)

In total, we get for the main component plus corrections in first
order:

|D(ωL )|2 ∝ a1
δ2 + (�/2)2

+ a2 δ + a3 + a4
δ

δ2 + (�/2)2
(7)

with

a1 ≈ D2
0 + 2 �D0 · �D1

�2

4�2
, a2 ≈ 2D2

1

�3
,

a3 ≈ D2
1

�2
, a4 ≈ −2 �D0 · �D1

�
(8)

where again � 	 � has been used. The third term in (7) can be
dropped because it is a constant, that is, independent of δ and
hence does not pull the line, and for the analysis of experimen-
tal data, a constant offset is usually already included as a back-
ground in the line shape. The first term is the unperturbed main
resonance around δ = 0 and a2 and a4 are asymmetric correc-
tions that pull the main line if not properly taken into account.

Note that the symmetric line distortions would not pose a seri-
ous problem if one is interested in finding the line center only.
For this, it would be sufficient to fit almost any other symmetric
line shape.
It turns out thatmany asymmetric line distortions can bemod-

eled by adding a small dispersive term like the last one in (7). The
usefulness of this expansion lies in the fact that the full and com-
plicated geometry dependence of the fourth term is described by
only one coefficient a4 and the line distortions add linearly scaled
with a4 to the unperturbed line shape. That is, summing up over
different emission and detection positions only changes a4, but
not the shape of the distortion itself. The same line shape ismain-
tained in the quantum mechanical treatment, albeit with differ-
ent explicit expressions for a1 . . . a4 (see Section 3.6). In practice,
they will be used as fitting parameters anyway. Additional per-
turbing peaks in the spectrum do not lead to additional terms.
They will merely change the values of the parameters a1 through
a4. This is because as long as the perturbing resonances are suf-
ficiently far detuned, their spectral behavior at the resonance
of interest is independent of their lifetime (i.e., the Lorentzian
pedestals always look like 1/ω2

L for large detuning).
The a2 coefficient is due to the incoherent line pulling of the

main line sitting on the pedestal (linearly expanded) of the per-
turbing line at δ = �. The a4 coefficient describes the coherent
effect of cross damping. To investigate their relative importance,
we first need to agree upon the way the line pulling is quantified.
Because the line is not simply shifted but also distorted, different
parts of the line are shifted by different amounts. We will define
the line pulling as the displacement of the half-width points of
the main line around δ = 0 which gives:[18]

�ω = 2a4�2 + a2�4

8a1
(9)

≈ 2a4�2 + a2�4

8D2
0

(
1−

�D0 · �D1

2D2
0

�2

�2
+ · · ·

)
(10)

≈ −
�D0 · �D1

2D2
0

�2

�
+ ( �D0 · �D1)2 + D2

0D
2
1

4D4
0

�4

�3
+ · · · (11)

The leading term in the expansion in powers of �/� is the lead-
ing term of a4/a1 whereas the incoherent pulling a2 is suppressed
by∝ (�/�)2. In most cases, it can be ignored. In fact, it will even
partially be compensated when fitting line shapes with the pa-
rameters a1 and a4 only. To place an upper limit on the order of
magnitude of the line pulling, onemight assume equal and paral-
lel dipole moments. In that case, the line pulling is expected to be
�ω ≈ �2/2�. This rule of thumb has also been obtained by M.
Horbatsch and E.A. Hessels[15] using the optical Bloch equations.
Alternatively, one might define the line pulling as the shift of

the maximum of the main line. It turns out that this reduces
the leading term in (11) by a factor two.[18] Both of these defini-
tions work for theoretical expressions but not for real experimen-
tal data that is subject to noise. In that case, a more reasonable
strategy is to first fit a Lorentzian, that is, the slightly wrong line
shape to average over the noise and then use its peak to quantify
the line pulling. It turns out that this method essentially gives the
leading term in (11), with a slight dependance on the frequency
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Figure 3. Left: Line pulling obtained when line distortions due to cross damping (quantum interference) are not properly taken into account. To quantify
and correct this error, samples are generated using the full line shape model given by (4) with identical and parallel dipole moments �D0 = �D1 and
identical line widths �. By fitting two Lorentzians within a frequency range of ωL = (ω0 − 2�,ω0 + 2�), the upper black curve is obtained that measures
the line pulling as a function of line separation (both in units of �). Very similar curves are obtained when fitting with the first and second term in (7).
On the other hand fitting with the first and last term of (7) reduces this error by many orders of magnitude (lower black curve). The gray dashed curve
shows the “rule of thumb” value �ω ≈ �2/2�. Right: Fit residuals of the peak normalized line shape (4) with � = 100� fitted with the approximate
line shape (7) without the linear and dispersive term (a2 = a4 = 0, black) and without only the linear term (a2 = 0, gray). It can be seen that including
the dispersive contribution reduces the residuals by two orders and, even more importantly, symmetrizes the remaining residuals. Therefore, the line
pulling is removed to a large extent.

range used for fitting. This is not a surprise because fitting is
most sensitive to the points with the largest slope. Residual devi-
ations of the model can always be determined by generating arti-
ficial data according to the full line shape (4), and employing the
same wrong function for fitting. This is investigated in Figure 3.

2.2. Related Effects

There are several other problems in atomic physics related to
cross damping. One of them is connected with the widely spread
rotating wave approximation, that is, neglecting the negative fre-
quency of an exciting radio frequency or laser field that goes along
with a real-valued driving force. In this sense, even a pure two-
level system gives rise to two resonances that are mirror images
about ω = 0. Just like the cross-damping pulling, ignoring the
negative frequency component leads to an error that is actually
not a shift but is rather due to using an incomplete line shape
model. Nevertheless, this problem has been called the Bloch–
Siegert shift.[19] With the formalism above, we can compute this
“shift” by choosing the perturbing line to be the negative compo-
nent with � = −2ω0, and amplitudes �D1 · �D2 = −1, D2

1 = 1 to
�ω = �2/4ω0. The usual textbook expression given for spinmag-
netic resonances is �ωBS = �2/4ω0,[19] where � is the Rabi fre-
quency. While magnetic resonances have essentially � ≈ 0, for
optical transitions in the perturbation regime, we have � ≈ 0.
In the intermediate case, we would have a power broadened
line with �′ = √

�2 + 2�2 (see ref. [20], Equations (2.24b) and
(2.27b)). Therefore, we replace� by

√
2� in the expression for the

line pulling. The usual textbook expression for the Bloch–Siegert
shift for spin magnetic resonances is then describing the shift of
the peak, while the leading term in (11) predicts it to be twice as
large. Because of the large line separation, the Bloch–Siegert is
hardly ever relevant for optical transitions.
Another related phenomenon is quantum beats,[21] that is a

temporal modulation of the emitted light from atoms that have

been initialized to two excited states at the same time. This ex-
citation is done with a short laser pulse whose spectrum covers
both transitions from an initial state. After the pulse, the clas-
sical analogue corresponds to freely decaying oscillators rather
than forced oscillators. In that case, the frequency ωL in (1) is
no longer the driving frequency but the Fourier frequency of the
emitted radiation. The latter consists of two components such
that a beat note is observed in the time domain. The cross term
in (4) acquires a time dependence whose frequency corresponds
to the energy difference of the contributing excited states and the
phase is given by the initial conditions, that is, a short pulse ex-
citation (see ref. [21] for details).
Similarly, several laser frequencies might be present at the

same time to drive a single transition. In the extreme case, one
might use a frequency comb with typically 105 equidistant laser
frequencies. The observed spectrum is periodic with the mode
spacing or pulse repetition rate. Therefore, one might expect that
these lines give rise to cross damping as described before. How-
ever, when driving a dipole-allowed single-photon transition in
this way,[22] the emissions that belong to the various laser modes
take place at different laser frequencies. The cross terms are
therefore beating at the mode spacing frequency, typically on the
order of 100MHz. A photodetector that receives the fluorescence
typically has a much lower bandwidth such that the cross terms
average out quickly. This situation is very similar for two-photon
comb spectroscopy, even though the classical toy model may not
be best to describe this situation. In this case, many pairs of
modes add up to the same transition frequency. The ones that
do not, belong to off-resonant excitation. However, in both cases,
(comb driven single-photon and two-photon) additional line com-
ponents are present so that the cross damping effect, as discussed
before, enters. The treatment for the two-photon case is some-
whatmore involved and requires third-order perturbation instead
of second order or the solution of the proper optical Bloch equa-
tions. Details for the hydrogen 1S–3S transition are presented in
ref. [23,24].
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Figure 4. In the spirit of fitting the “wrong” line shape to determine the
corrections required and subsequently fix the error, we first generate arti-
ficial line profiles with (4). These line shapes are then fitted with the same
profile but dropping the cross term. The plot shows the line pulling as a
function of line separation �.

Another related phenomenon is the line profile frequently ob-
served in photoelectron spectroscopy. Here, direct ionization and
ionization via a doubly excited autoionizing state are two quan-
tum paths that connect common initial and final states. In this
context, the line shape is a Fano profile. In fact, expanding the
Fano line shape given in ref. [25], and keeping only terms first or-
der in the Fano parameter, results in the same line shape as (7).

2.3. Unresolved Lines

Another important situation occurs when the interfering lines
are not well resolved[16] as in Figure 2 but instead � 
 �. This
might take place, for example, if the hyperfine structure is buried
within the natural line width. The 2S–8D transition in atomic
hydrogen[26] is an example. In this case, the emitted spectrum
appears in first order as a single line with a slightly larger line
width. There seems to be little hope that the main transition en-
ergy can be extracted with a large line splitting factor unless the
line separation � is very well known. This is often the case if the
buried line components are due to the hyperfine structure.
Taking advantage of this knowledge one can use the full line

shape (4) with a fixed value of � instead of an approximate line
shape (7). In practice though, the main issue will be that the rela-
tive intensities of the terms in (4) will not be exactly as theory pre-
dicts. Tiny variations of the relative intensities will have a severe
effect of the center of mass on the resulting convoluted line. The
relative strength of the first two terms may depend on the laser
polarization. Likewise, the relative intensity of the cross term de-
pends on the detector position, the solid angle of detection, polar-
ization, sensitivity, etc. These parameters are difficult to control
with good accuracy. One can solve this problem by introducing
two adjustable parameters that rescale the second and third term
of (4). Fitting this line shape in this way does not introduce an
error in the sense of a known deviation between the fitted and the
observed function.
To investigate the influence of the cross damping term in this

case, we fit the line shape using (4) but dropping the cross term.
Figure 4 shows the result for different relative intensities D2

0/D
2
1 .

It can be seen that neglecting cross damping gives errors intol-
erable for precision experiments, except for the case where the

two lines occur with the same intensity (D2
0 = D2

1). In the latter
case, the residuals are symmetric about the line center δ = �/2
and hence no line pulling occurs, even when the fit does not de-
scribe the line shape well. However, with the arguments above,
it is probably not advisable to assume exactly equal intensities,
even if theory predicts that.
A similar situation occurs for single peaks that are split

through the Zeeman effect or when the transition is observed
in a standing wave to suppress the first-order Doppler effect.[27]

Depending on themagnitude of these splittings and the accuracy
goal, onemay ignore or fit the full line shape, as described before,
to compensate.

2.4. Simultaneous Separated and Unresolved Lines

Well-separated and unresolved line components may occur si-
multaneously, for example, with unresolved hyperfine structure
and well-resolved fine structure. Again, the 2S–8D transition in
atomic hydrogen[26] is an example because the 2S–8S transition
is also allowed through a two-photon excitation. To derive a suit-
able line shape model for this situation, we start with an expres-
sion analogous to (1), but with three dipole moments �D0, �D1, and�D2. The transition energy of the first two is assumed to be sepa-
rated by small detuning �< 
 � that is not resolved, while the
third resonance is well resolved and detuned by �> 	 � from
the first one. Computing the spectral intensity as in (4) leaves us
with three real-valued Lorentzians and three cross terms. Two of
the latter correspond to large detunings and may be expanded as
in (7) while the third one may be treated as in the previous sec-
tion assuming an a priori knowledge of �<. The total line shape
will then look like:

|D(ωL )|2 ∝ b1
δ2 + (�/2)2

+ b2
(δ − �<)2 + (�/2)2

+ b3δ(δ − �<)+ (�/2)2(
(δ2 + (�/2)2

)(
(δ − �<)2 + (�/2)2

)
+ b4δ + b5

δ

δ2 + (�/2)2
+ b6

δ − �<

(δ − �<)2 + (�/2)2
(12)

Here, b1 . . . b6 are adjustable parameters. A constant term ∝ �<

has been dropped like in (7). For real-world noisy data, fitting this
function works remarkably well, because the contributions from
the separated lines and the unresolved lines are quite different in
shape about the line center.

2.5. Doppler Broadening

So far the treatment has been for single atoms at rest. In a real
experiment, one often deals with many atoms that are in motion,
for example, in a gas or in an atomic beam, andwe have to include
the velocity distribution. The frequency shiftmay be cancelled by
some Doppler-insensitive method like saturation spectroscopy,
two-photon spectroscopy, or by employing a standing wave (see,
e.g., ref. [28,29]). Tomodel the remaining Doppler broadening, we
assume the atoms to be spatially distributed in a random fashion
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so that their contributions to the emitted field do not have fixed
phase relations. This means that the emitted intensity (4) rather
than the emitted field (1) has to be convolved with the velocity
distribution. In other words, the different Doppler components
do not cross damp. With regard to Horbatsch/Hessels’ rule of
thumb that was mentioned in the wake of (11), a good limit for
the line pulling is to replace the natural line width with the ob-
served line width.
In the case of well-separated lines (Section 2.1), we convolve

the expanded line shape (7) with a Gaussian (Maxwellian veloc-
ity) with a full width at half maximum of �G . While ignoring the
second term, the convolution of the first and the last term can be
cast into the real and imaginary part of the Faddeeva function[6,30]

(also known as the complex error function w(z))[31]). For com-
putational reasons, it is advantageous to rewrite the convoluted
profiles in terms of these standard functions for which fast and
precise algorithms exist:[32]

|D(ωL )|2 ∝ A
(
Re

[
w(z)

] + 2η Im
[
w(z)

])
with

z = 2
√
ln(2)

(
δ

�G
+ i

�

2�G

)
(13)

This fit function, we call the Fano–Voigt line shape, was used
for the data analysis in [6]. It involves six free parameters, the
center frequency ω0, the amplitude A, a constant background,
the Lorentzian andGaussian widths,� and�G = ω0

√
2kBT/Mc2

(FWHM in rad s−1) and the asymmetry parameter η = a4�/4a1
(see (7)).
Folding the cross term in (4) with a Gaussian can be done in a

similar way resulting in

|D(ωL )|2 ∝ A
(
Re

[
w(z)

] + ξ Re
[
(2+ i2�/�)w(z)

+ (2− i2�/�)w(z− �/�G)
] )

(14)

with another adjustable parameter ξ and the same definition of
z. To convolve the line shape (12), one has to add (13) and (14)
with two additional parameters.

3. Quantum Mechanical Treatment

While the classical toy model gives some intuition into the prob-
lem, it is incomplete as it does not provide the dipole moments of
individual oscillators. In addition, it fails in some cases when the
initial and final states are not identical. For example, exciting the
2S(F =0)→ 4P1/2(F =1) transition in atomic hydrogen with lin-
early polarized light (only F =0 → F =1 allowed) and observing
the photons emitted upon the decay to all the 1S Zeeman levels,
we find a spherical symmetric emission pattern (see coefficient
a1 in (46)). This is not in agreement with the expected emission
pattern of a classical dipole. We are not aware of a classical ana-
logue that takes discrete energy levels properly into account. This
problem shows up in full when all three, the initial, excited, and
final levels are different.

3.1. Optical Bloch Equations with Cross Damping

There are two approaches that deal with cross damping within
the realm of quantum mechanics. The more fundamental one
starts from the master equation for the interaction of a multi-
level atomic system with a quantized electromagnetic field using
the densitymatrix formalism and uses theWigner–Weisskopf ap-
proximation to treat spontaneous decay as a result of the interac-
tion with the electromagnetic vacuum.[33,34] With this procedure
a Liouville–von Neumann equation

∂ρ

∂t
= 1

i�

[
Ĥ, ρ

] − L̂ρ (15)

is obtained where the atomic part and the coherent atom–light
interaction are given by

Ĥ =
∑
n

|n〉〈n|�ωn + �

2

∑
j

(
Ŝ+
j � j eiωL t + Ŝ−

j �∗
j e

−iωL t
)

(16)

The first sum runs over all levels with energy �ωn with one of
them typically chosen to be zero while the second sum runs over
all transitions that are connected by the coherent laser field at
frequency ωL . The Rabi frequencies � j = d j E/� are given by
the electric field of the laser and the dipole matrix element d j

of the transition j . In some cases, it is advantageous to work
with a complex Rabi frequency, that is, a complex field to read-
ily include phase shifts such as the ones caused by the Doppler
effect (with E = E0e−i �k·�r ). The projection operators Ŝ+

j are given
by terms like |i〉〈e| for all transitions that are connected by the co-
herent laser field. Likewise, the conjugate operators Ŝ−

j are given
by terms like |e〉〈i |.
Spontaneous emission is described by the Lindblad operator:

L̂ρ = 1
2

∑
i j

�i j
{
Ŝ+
i Ŝ

−
j ρ − 2Ŝ−

j ρ Ŝ+
i + ρ Ŝ+

i Ŝ
−
j

}
(17)

Again the indices i and j do label transitions not levels, but spon-
taneous transitions in this case. The so-called cross damping
decay constants are given by �i j = √

�i� j �εi · �ε j where �i and
� j are the decay constants for transition i and j , respectively.
The spherical unit vectors along the corresponding dipole mo-
ment are given by �εi (see below). The projection operators Ŝ+

i
are now given by terms like |e〉〈 f | with the levels that corre-
spond to the spontaneous decays i . Likewise the Ŝ−

i projectors
are given by combinations like | f 〉〈e|. All other non-energy con-
serving terms disappear within the rotating wave approximation
that is assumed here. Note that the final states may include some
of the initial states. Cross damping occurs with i �= j from at least
two coherently populated excited states that decay with the same
polarization, that is, �εi = �ε j to a common final state.
Given all the projection operators, the transition energies

and the decay constants, the optical Bloch equations are read-
ily obtained from the Liouville–von Neumann Equation (15).
See refs. [15,35,36] for examples of Bloch equations with cross-
damping. With N levels, there are N2 real-valued differential
equations. For large systems, a computer algebra system may
be implemented that outputs these equations for subsequent nu-
merical integration.
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3.2. Perturbation Theory with Cross Damping

While numerical integration of the optical Bloch equations is an
extremely powerfulmethod that can include other effects like sat-
uration, we will now focus on perturbation theory. This allows us
to obtain analytic expressions for the line shapes. One may use
the time evolution operator constructed from Ĥ in a Dyson se-
ries to derive the Kramers–Heisenberg formula within the rotat-
ing wave approximation.[16,38] It uses the amplitude and phase of
a classical electromagnetic wave atωL scattered by an atom that is
taken from the initial state |i〉 to the final state | f 〉 via the excited
state |e〉 (see Figure 1):

Se,i→f
q ,p ≡ dp(i→e) dq (e→ f )

ωL − ωei + i�e/2
(18)

The energies of the involved levels areωi ,ω f , andωe and the tran-
sition frequency is defined as ωei = ωe − ωi while the frequency
of the scattered wave is given by ωs = ωL − ω f + ωi . The inverse
lifetime of the excited state is given by �e while the lifetime of
the final state does not enter. There are distinct absorption and
emission dipole moments dp(i→e) and dq (e→ f ), respectively.
Their polarizations are given with spherical components p and q
in order to apply the Wigner–Eckart theorem (see below). These
components are related to the Cartesian components through

d−1 = + 1√
2

(
dx − idy

)
, d0 = dz, d+1 = − 1√

2

(
dx + idy

)
(19)

Analogous expressions hold for any other vector. The (q , p) = 0
component represents a dipole moment that oscillates linearly
along the z-axis (π component). By virtue of the±90◦ phase shift
of the y-component relative to the x-component, (q , p) = ±1 rep-
resent dipole moments that are circular about the z-axis, also
called σ± components. The correspondent light polarization de-
pends on the propagation direction that the atom does not know
about in the dipole approximation. These components are not
only connected to polarizations but also to particular dipolar
emission patterns (see below).
The scattering rate of a laser with electric field amplitude EL :

Rq ,p(i→ f ) = πE 2
Lω

3
s

h3c3ε0

∣∣∣Dq ,p(ωL )
∣∣∣2 with Dq ,p(ωL ) =

∑
e

Se,i→f
q ,p

(20)

describes the number of incident photons[39] with frequency ωL

and polarization p that are converted to emitted photons with
frequencyωs and polarization q while transferring the atom from
|i〉 to | f 〉.
In this language, the cross damping effect seems to come in

a different way from the optical Bloch equations but very simi-
lar to the classical counterpart (4). The coherent addition of all
paths leading from the initial state via all possible excited states
to the final state represent the distinct resonances and the cross
terms that appear through the squaremodulus. Since the distinct
quantum paths interfere, the phenomenon is often referred to as
“quantum interference.” Finally, it should be noted that the initial
and final states do not have to be identical, but they could be.

3.2.1. Arbitrary Laser Polarization

For linear laser polarization along the z-axis or circular polariza-
tion about the z-axis, the scattering rate can be calculated with
p = 0 and p = ±1, respectively, using the above formalism. Any
other polarization vector �εL with spherical components εp analo-
gous to (19), has to be expressed in terms of a scalar product in
order to decompose in spherical components of the dipole oper-
ator:

�d(i→e) · �εL =
∑
p

(−1)pdp(i→e)ε−p (21)

The absorbing dipole dp(i→e) in (18) has to be replaced with
the sum on the right-hand side so that the total emitting dipole
becomes:

Dq ,p(ωL ) =
∑
e

∑
p

(−1)p Se,i→f
q ,p ε−p (22)

For linear laser polarization along the direction (θL , ϕL ) for exam-
ple, the polarization vector reads:

ε−1 = + 1√
2

(
sin(θL ) cos(ϕL )− i sin(θL ) sin(ϕL )

)
(23)

ε0 = cos(θL ) (24)

ε+1 = − 1√
2

(
sin(θL ) cos(ϕL )+ i sin(θL ) sin(ϕL )

)
(25)

3.3. Matrix Elements

The Wigner–Eckart theorem (ref. [40], (4.120)) allows us to de-
compose the dipole matrix elements into a factor that contains
the geometry (i.e., z–components of the involved angular mo-
menta) in the form of a 3j symbol, and a reduced matrix element
that is independent of it:

〈n, (I J )FM|dq |n′, (I J ′)F ′M′〉

= (−1)F−M

(
F 1 F ′

−M q M′

)
〈n, (I J )F ||d ||n′, (I J ′)F ′〉 (26)

In this expression, it is assumed that the nuclear angularmomen-
tum I and the total electronic angular momentum J are coupled
to the total angular momentum of the atom F with z-component
M. The principal quantum numbers of the involved electronic
states are given by n and n′. The nuclear angular momentum is
associated only with a magnetic dipole moment but not with an
electric dipole moment. Therefore, the dipole operator does not
act on I . In this situation, the reduced matrix elements can be
further reduced (ref. [40], (4.175)):

〈n, (I J )F ||d ||n′, (I J ′)F ′〉 = (−1)I+J+F ′+1√(2F + 1)(2F ′ + 1)

×
{
J F I
F ′ J ′ 1

}
〈n, J ||d ||n′, J ′〉 (27)
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The total electronic angular momentum J is itself composed of
two components, the total orbital angular momentum L and the
total spin angular momentum S of the electrons. Again, the elec-
tric dipole operator does not act on spin so that the reducedmatrix
element reduces once more. In total, we get:

dq (e → f ) = (−1)F f −Mf

(
F f 1 Fe

−Mf q Me

)
〈n f , L f ||d ||ne , Le 〉

× (−1)J f +I+Fe+1√(2F f + 1)(2Fe + 1)
{
J f F f I
Fe Je 1

}

× (−1)L f +S+Je+1√(2J f + 1)(2Je + 1)
{
L f J f S
Je L e 1

}
(28)

The last reduced matrix element 〈n, L ||d ||n′, L ′〉 can be com-
puted from any other line strength quantifier like oscillator
strength or measured transition rates, etc.[41] For atomic hydro-
gen, the reduced matrix element can be computed analytically
from (63.2) and (63.5) in ref. [42]. Here n f , F f , Mf , J f , and L f

are the quantum numbers of the final state, ne , Fe ,Me , Je , and Le

are the quantum numbers of the excited state. An analogous ex-
pression for the absorbing dipole moment in (20) is obtained by
replacing f → e , e → i , and q → p. To analyze the line shape
that belongs to the same ne , Le fine structure manifold, we set
the reduced matrix element to 1 as it is a common factor to all
Zeeman, fine, and hyperfine components. The 3j and 6j symbols
may be computed using the Racah formula[43] or with dedicated
computer routines. Both the 3j and 6j are given as square roots
of (mostly small) integer ratios. Special cases, that should cover
all practically relevant cases, are given in sections 4.2.2 and 4.2.4
of ref. [40].

3.4. Emitted Intensity Pattern

To compute the emitted pattern and spectrum, we now under-
stand the scattering amplitude (18) in the following way: The en-
ergy denominator and the absorbing dipoles dp(i→e) determine
the amplitude of the emitting dipole D(ωL ) that is given in spher-
ical components in (20). The far-field of the latter oscillating with
frequency ωs and located at the origin can be described with clas-
sical electrodynamics (see (2)):

�E (�r ) ∝
(
�r × �D(ωL )

)
× �r eiωs t−iks r

r 3
(29)

Here �r is the detection point and r = |�r | the distance from the ori-
gin. The latter is of no interest here so that the last factor in (29) is
ignored. Only the direction in which the field is detected matters.
This direction is described by (θ, ϕ) in spherical coordinates[44]

whose unit vectors are:

�er =
⎛
⎝sin(θ ) cos(ϕ)sin(θ ) sin(ϕ)

cos(θ )

⎞
⎠, �eθ =

⎛
⎝cos(θ ) cos(ϕ)cos(θ ) sin(ϕ)

− sin(θ )

⎞
⎠,

�eϕ =
⎛
⎝− sin(ϕ)

cos(ϕ)
0

⎞
⎠ (30)

Plugging the spherical components �D(ωL ), given analogously to
(19), into (29), yields an expression for the emitted field �E (�r ) for
each spherical components q that might be used to verify that the
field is transversal, that is, �er · �E (�r ) = 0. The expression for �E (�r )
is rather lengthy and not required, so it will not be reproduced
here. Instead, the two polarization components along �eθ and �eϕ

are of interest:

Eθ (θ, ϕ) ≡ �eθ · �E (�r ) ∝ − sin(θ )D0,p(ωL )

+ cos(θ )√
2

(
e+iϕD−1,p(ωL )− e−iϕD+1,p(ωL )

)
(31)

Eϕ(θ, ϕ) ≡ �eϕ · �E (�r ) ∝ i√
2

(
e+iϕD−1,p(ωL )+ e−iϕD+1,p(ωL )

)
(32)

The phase terms exp(iωs t − iks r )/r have been suppressed. To
take the possibility of several final states into account, their in-
tensities are added incoherently. This is because quantum paths
that do not end at the same states do not interfere (see Figure 1).
In total, we get for the intensity seen by a polarization insensitive
detector,[45]

I(θ, ϕ) ∝
∣∣∣�eθ · �E (�r )

∣∣∣2 +
∣∣∣�eϕ · �E (�r )

∣∣∣2

∝
∑
f

∣∣∣∣∣∑
e,p

(−1)p
(

− sin(θ )Se,i→f
0,p

+ cos(θ )√
2

(
e+iϕSe,i→f

−1,p − e−iϕSe,i→f
+1,p

))
ε−p

∣∣∣∣∣
2

+1
2

∑
f

∣∣∣∣∣∑
e,p

(−1)p
(
e+iϕSe,i→f

−1,p + e−iϕSe,i→f
+1,p

)
ε−p

∣∣∣∣∣
2

(33)

where the dipole moment (22) together with (18) has been used.
The sums over the excited states extend over all levels Je , Fe , Me

that are close to resonance. The sum over the final states should
extend over all levels J f , F f , Mf to which transitions are de-
tected. This is the final expression for the single atom response
that will be used to model all of the following line shapes. In
some cases, it might be useful to separate the cross damping
terms from the line shape. By adding the quantum paths via the
excited states incoherently by pulling the sum over e out of the
square modulus, one obtains the line shape without the cross
damping. The difference to the total line shape gives the cross
damping terms.
In many cases, laser excitation will take place with one of the

standard polarizations εp only. In that case, (33) can be further
simplified

Ip(θ ) ∝ sin2(θ )
∑
f

∣∣∣∑
e

Se,i→f
0,p

∣∣∣2

+ cos2(θ )+ 1
2

∑
f

(∣∣∣∑
e

Se,i→f
+1,p

∣∣∣2 +
∣∣∣∑

e

Se,i→f
−1,p

∣∣∣2) (34)
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such that the three spherical components of the emitted light do
not interfere. The emitted intensity is rotationally symmetric for
each of the spherical components q and hence the ϕ dependence
is dropped here. The first term is the π component (q = 0) of
the emitted radiation with its characteristic sin2(θ ) emission pat-
tern, while the second term are the σ± components (q = ±1)
that have identical intensity emission patterns. The relative in-
tensities emitted along the positive z-axis (θ = 0) are (1,0,1) for
the (σ−, π, σ+) components because the

∑
f | ∑e S

e,i→f
q ,p |2 are the

same for all q . The intensities perpendicular to the z-axis (θ =
π/2) are (1/2, 1, 1/2) with the same relative units. This means
that the π component vanishes when observed along the z-axis
while the σ components are only half as strong when observed
perpendicular to the z-axis. In addition, one sees that all compo-
nents contribute equally if the intensities along the x-, y-, and
z-axes are added. However, the σ and π components can only
be detected selectively with certain polarizations and/or detector
positions.
To justify (34), let us investigate the selection rules expressed

by thematrix elements (28). The terms appearing in (33) have the
form

∑
e,e ′ S

e,i→f
q ,p (Se

′,i→f
q ′,p′ )∗ and are proportional to the product of

the following 3j symbols:

(
F f 1 Fe

−Mf q Me

)(
Fe 1 Fi

−Me p Mi

)(
F f 1 Fe ′

−Mf q ′ Me ′

)(
Fe ′ 1 Fi

−Me ′ p′ Mi

)

Conservation of the z-component of the angular momentum re-
quires that each of the 3j symbols vanish unless the sum of

the lower row vanishes. This means that Mf = q + Me ∧ Me =
p + Mi ⇒ Mf = q + p + Mi and Mf = q ′ + Me ′ ∧ Me ′ = p +
Mi ⇒ Mf = q ′ + p′ + Mi . Subtracting the two resulting equa-
tions yields that only terms with q + p = q ′ + p′ contribute to
the sum and hence nomixing between the spherical components
occurs, that is, q = q ′ if the sums over p and p′ contain only one
and the same p.
At last, it should be mentioned that both line shapes in this

section, (33) and (34), may need to be convolved with a Gaussian
to account for the velocity distribution as in Section 2.5.

3.5. Detection Solid Angle

The analysis so far assumes a point-like detector at a direction
(θ, ϕ) from the atom, which measures the line shape at this po-

sition via (33). A real detector though has a finite solid angle �d

such that the received line shape becomes:

I(�d ) =
∫∫
�d

I(θ, ϕ) sin(θ )dθdϕ (35)

An important limiting case is a detector that collects the total sig-
nal, that is,�d = 4π that may be difficult to reach in a real exper-
imental set up. Integrating (34) yields

I(�d =4π ) ∝ 8π
3

∑
f

(∑
e,p

∣∣∣(−1)p Se,i→f
0,p ε−p

∣∣∣2

+
∑
e,p

∣∣∣(−1)p Se,i→f
−1,p ε−p

∣∣∣2 +
∑
e,p

∣∣∣(−1)p Se,i→f
+1,p ε−p

∣∣∣2
)

= 8π
3

∑
f,q

∑
e,p

∣∣∣(−1)p Se,i→f
q ,p ε−p

∣∣∣2 (36)

where the sin(θ ) cos(θ ) and cos(2ϕ) cross terms have vanished
upon integration in the first line. The remaining cross terms∑

f,q S
e,i→f
q ,p (Se

′,i→f
q ,p )∗ could give rise to the quantum interference.

However, if the reduced matrix elements of all emitting dipole
moments are identical, these cross terms also vanish for e �= e ′

as can be seen by inspecting corresponding sums over the 3j and
6j symbols:

∑
L f

∑
J f ,F f

(2J f + 1)(2F f + 1)
{
L f J f S
Je L e 1

}{
L f J f S
Je ′ Le ′ 1

}{
J f F f I
Fe Je 1

}{
J f F f I
Fe ′ Je ′ 1

}
︸ ︷︷ ︸

= δLe ,Le ′ δJe ,Je ′

× √
(2Fe + 1)(2Fe ′ + 1)

∑
Mf ,q

(
F f 1 Fe

−Mf q Me

)(
F f 1 Fe ′

−Mf q Me ′

)
︸ ︷︷ ︸

= δFe ,Fe ′ δMe ,Me ′

(37)

The resulting Kronecker deltas of the second factor are due to
the orthogonality relation of the 3j symbols and are used in the
first factor together with another orthogonality relation of the 6j
symbols (summing over J f and F f ). Hence, quantum interfer-
ence vanishes when detecting in �d = 4π unless at least two of
the excited states have all identical angular momentum quantum
numbers, and hence must differ in the principal quantum num-
bers. In this case, the reduced matrix elements are in general not
identical. Typically, there will be no excited states whose energies
are sufficiently close such that quantum interference is impor-
tant. Exemptions require special level schemes and are discussed
in the context of suppressing spontaneous emission.[36,37] For the
application here, the important result is that there is no line dis-
tortion due to the quantum interference effect with a hypothetical
4π detector that has no polarization sensitivity. This finding pro-
vides a guide to the design of the detector unit. A large detection
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solid angle not only reduces possible systematic effects due to
line distortion but also reduces the statistical uncertainty. This is
a rare combination that should be exploited when possible (see
detection unit in ref. [6] for example).
Intuitively, we can state that quantum interference gives rise to

a detuning dependent variation of the spatial emission pattern.
However, suppression of the emission in one direction is com-
pensated by an enhanced emission into another direction. The
Zeeman structure of at least one of the involved levels has to be
taken into account to describe any directivity since at least one
level must be L > 0 for dipole transitions. Hence, a model that
ignores the Zeeman structure, like a two-level system, cannot de-
scribe this behavior.[15]

A typical situation is that the detection solid angle is a cone
with an opening angle θc about the z-axis.[34] With the laser polar-
ized linearly along the z-axis we find:

Ip=0(�d ) =
∫ 2π

0

∫ θc

0
Ip(θ ) sin(θ )dθdϕ

∝ 8π
3
sin4

(
θc

2

)(
2+ cos(θc )

) ∑
f

∣∣∣∣∣∑
e

Se,i→f
0,p

∣∣∣∣∣
2

+ π

12

(
16− 15 cos(θc )− cos(3θc )

)

×
∑
f

(∣∣∣∑
e

Se,i→f
+1,p

∣∣∣2 +
∣∣∣∑

e

Se,i→f
−1,p

∣∣∣2
)

(38)

This expression reduces to (36) with ε−p = δp,0 for θc = π and
vanishes for θc = 0. Explicit examples will be given in Section 4.

3.6. Expanding the Line Shape

As with the classical toy model (Section 2.1), we follow the ana-
lysis given by Jentschura and Mohr[18] for well-resolved lines and
separate the sum over the resonances in (34) into the main per-
turbed resonance at ωei , and the non-resonant perturbing reso-
nances at ωe ′i . Using (18), we get

∣∣∣∣∣∑
e

Se,i→f
q ,p

∣∣∣∣∣
2

= d2p(i→e)d2q (e→ f )

δ2 + (�e/2)2

+ δ
∑
e ′ �=e

∑
e ′′ �=e

dp(i→e ′)dq (e ′ → f )dp(i→e ′′)dq (e ′′ → f )
(ωe ′ − ωe )2(ωe ′′ − ωe )2

× (ωe ′ + ωe ′′ − 2ωe )

− 2 δ
dp(i→e)dq (e→ f )

δ2 + (�e/2)2
∑
e ′ �=e

dp(i→e ′)dq (e ′ → f )
ωe ′ − ωe

(39)

where we have reintroduced the laser detuning from the main
resonance δ = ωL − ωei and neglected the damping term �e ′ for
the non-resonant terms. Note that thematrix elements dq are real.
In comparison with (9) in ref. [18], we have left out the counter-
rotating terms (B∗

i (εL , εs ) in their notation), that is, neglected the

Bloch–Siegert shift. Analogous to (7), the emitted intensity of (34)
is written as:

Ip(θ, ϕ) ∝ a1
δ2 + (�/2)2

+ a2 δ + a4
δ

δ2 + (�/2)2
(40)

with

a1 = d2p(i→e)
∑
f

[
sin2(θ )d20 (e→ f )+ cos2(θ )+ 1

2

×
(
d2−1(e→ f )+ d2+1(e→ f )

)]
(41)

a2 =
∑
f

∑
e ′ �=e

∑
e ′′ �=e

dp(i→e ′)dp(i→e ′′)(ωe ′ + ωe ′′ − 2ωe )
(ωe ′ − ωe )2(ωe ′′ − ωe )2

×
[
sin2(θ )d0(e ′ → f )d0(e ′′ → f )

+ cos2(θ )+ 1
2

(
d−1(e ′ → f )d−1(e ′′ → f )

+ d+1(e ′ → f )d+1(e ′′ → f )
)]

(42)

a4 = −2
∑
f

dp(i→e)
∑
e ′ �=e

dp(i→e ′)
ωe ′ − ωe

×
[
sin2(θ )d0(e→ f )d0(e ′ → f )

+ cos2(θ )+ 1
2

(
d−1(e→ f )d−1(e ′ → f )

+ d+1(e→ f )d+1(e ′ → f )
)]

(43)

analogous to the classical toy model (8). With these coefficients
the line pulling can be computed using (9) with the leading order
a4�2/4a1. Although the sums look rather frightening in the gen-
eral case, they actually do not havemany terms inmost cases. For
example, if there is only one perturbing transition, the sums over
e ′ and e ′′ have only one term. In addition the squares of the 3j and
6j symbols in (28) are small fractions. With a computer algebra
system an analytic expression for the general case is readily ob-
tained. Unresolved lines can be treated in an analogous way (see
Sections 2.3 and 2.4). A possible Doppler width can be folded into
(40) as described in Section 2.5.

4. Explicit Examples

4.1. The Lamb Shift

Probably the most prominent example in precision spectroscopy,
that requires one to find the energy difference of two levels by
investigating a broad line, is the Lamb shift. This is a splitting
between the 2S and the 2P1/2 levels in atomic hydrogen that is
not predicted by the Dirac theory but by QED. In the context
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Figure 5. Level scheme of the hydrogen 2S-4P multiplet with nuclear spin
I = 1/2. Left: The fine structure splitting of the 4P state is around 1.4 GHz
while the hyperfine splittings are 7.4 and 3.0 MHz. Right: Preparing the
atoms in the 2S(F = 0) state, there are only two allowed Zeeman compo-
nents with a laser linearly polarized along the z-axis. These components
are spectrally separated by about 1.4 GHz, that is, �/� ≈ 100, so that
quantum interference terms should be taken into account if one wants to
find the line center to better than �1% (means approximately) of the line
width.[15]

of this work, one would expect that the 2S–2P1/2 transition at
about 1 GHz is perturbed by the 2S–2P3/2 transition at about
10 GHz, since these lines are only separated by about 100 line
widths (�e = 2π × 100 MHz). Line pullings of the MHz order
would be the result,[14] whereas kHz uncertainties are required
formodernQED tests.[46] Fortunately, the effect of quantum inter-
ference is insignificant in a the Ramsey excitation scheme where
the detected signal is not the emitted light but the surviving 2S
atoms.[47] Provided that all Zeeman sublevels are detected with
the same efficiency, no quantum interference is expected because
this situation is analogous to a detection solid angle of 4π .

4.2. The Hydrogen 2S–4P Transition

In contrast, quantum interference may be important for the hy-
drogen 2S–4P transition that played a decisive role in illuminat-
ing the so-called “proton radius puzzle,” a discrepancy between
precision laser spectroscopy on regular hydrogen and muonic
hydrogen.[48] The proton charge radius, together with the Ryd-
berg constant, enters the theoretical description of the energy lev-
els of atomic hydrogen. By measuring at least two energy differ-
ences, one can obtain values for these constants. Unfortunately,
there is only one metrologically relevant transition[49] with a nar-
row line width—the 1S–2S transition with a natural line width of
1.3 Hz. All of the other useful transitions have several 100 kHz
or even several MHz natural line widths. Therefore, at least one
energy difference has to be obtained from a broad line, which
then sets a limit on the accuracy of the proton charge radius and
the Rydberg constant. As described in ref. [28], we chose to repeat
themeasurement of the 2S–4P transition[6] and improve previous
results.[50] Figure 5 shows the scheme of the involved levels.
In our experiment a cold beam of 2S atoms is generated with

laser excitation at 243 nm from the ground state, which pre-
pares the initial metastable 2S (F= 0) state. After exciting the

2S–4P transition with a second laser at 486 nm, the atoms de-
cay to the 1S state (final state). In previous experiments the stan-
dard detection method has been to observe the number of sur-
viving 2S atoms.[50] This method does not suffer from line dis-
tortions due to quantum interference as long as all 2S Zeeman
sublevels are detected with the same efficiency. However, with
this detection method one needs to measure a small dip on a
large noisy background. Therefore, we decided to detect fluo-
rescence instead and deal with the quantum interference. Two
resonances, the 2S(F =0) → 4P1/2(F =1) and the 2S(F =0) →
4P3/2(F =1) contribute with an intensity ratio of 1:2. They are
spectrally separated by � = 2π × 1367 MHz and have identi-
cal line widths of � ≡ �e = 2π × 12.9 MHz. The toy model (11)
predicts the 2S(F =0) → 4P1/2(F =1) line to be pulled by up to
�2/

√
2� ≈ 2π × 86 kHz if quantum interference is ignored and

a point-like detector is used. Since an uncertainty of the order of
1 kHz is required to be relevant to the proton radius puzzle, this
must be taken into account in our experiment.

4.2.1. Full Line Shape

To derive the full line shape, we take as the initial state the 2S state
with Fi = Mi = 0, Ji = 1/2, and Li = 0. Further, we assume the
laser that drives the 2S–4P transitions to be linearly polarized
along the z-axis (p = 0) and use (34) with the reduced matrix ele-
ments in (28) set to unity. The 4P excited states are Fe ′ = 1,Me ′ =
0, Je ′ = 1/2, Le ′ = 1, and Fe ′′ = 1, Me ′′ = 0, Je ′′ = 3/2, Le ′′ = 1
(see Figure 5). Detection is assumed to take place in the direc-
tion (θ, ϕ = 0) via the 4P–1S decay channel such that J f = 1/2,
L f = 0, and F f = 1, 0 (with all allowed Mf ). This yields the ex-
plicit full line shape function of this transition[51]

I P1/2 (θ ) ∝
∣∣∣∣ 1
δ + i�/2

− 1
δ − � + i�/2

∣∣∣∣2(1+ cos2(θ ))

+
∣∣∣∣ 1
δ + i�/2

+ 2
δ − � + i�/2

∣∣∣∣2 sin2(θ ) (44)

where we set the unperturbed 2S–4P1/2 Je = 1/2 resonance to
δ = 0. For any other linear laser polarization, one could pick the
z-axis to align along the laser polarization. Alternatively, one can
use (33) for linear polarization along (θL , ϕL = 0) to obtain the
same line shape except that θ is replaced by θ − θL . The Zeeman
sublevels Me = −1, 0, +1 that need to be summed over in this
case are assumed to be degenerate, that is, representing a single
energy denominator in (18) per excited state. Amore complicated
expression for non-vanishing ϕL could be given, but does not lead
to new insights, because the coordinate system can always be cho-
sen such that ϕL = 0. This line shape for linearly polarized exci-
tation and perpendicular detection is plotted in Figure 6 together
with a Lorentzian fit that, at first glance, seems appropriate, even
for the noise-less theoretical curve. However, the fit residuals at
the bottom reveal the problem. Line distortions are almost fully
asymmetric and hence most effective for line pulling effects.
It is instructive to compute the intensity emitted into each of

the spherical components separately, even though they cannot
be easily measured separately. For this purpose, we subtract the
direct resonances

∑
e |Se,i→f

q ,p |2 from the corresponding sums in
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Figure 6. Top: The hydrogen 2S–4P1/2 and 2S–4P3/2 resonance excited
with linear p = 0 laser polarization (along z-axis) when detecting all flu-
orescence, that is, independent of polarization, along the x -axis (θ =
π/2, ϕ = 0) according to the full line shape model of (44). Zero detuning
is chosen to be the non-perturbed 2S–4P1/2 resonance. Only one hyperfine
component, F =0 → F = 1 is allowed for each of the fine structure com-
ponents. Center: Magnification of the 2S–4P1/2 resonance together with a
fitted Lorentzian (dashed) that cannot be distinguished from the full line
shapemodel unless one plots the fitting residuals at the bottom. Note that
these residuals are well characterized by the last dispersive term in (40).
The remaining deviations are very symmetric about δ = 0 and give rise to
only a very small line pulling.

(34). Figure 7 shows an example and illustrates that quantum in-
terference adds to zero if all spherical components are detected
with equal sensitivity as proven above. Another way to cancel the
cross terms would be to add signals detected along the x-, y-, and
z-axes (right side of Figure 7). This cancellation is independent
of laser polarization. Yet another possibility is to align for the
“magic angle” as introduced in this context by R.C. Brown et al.[16]

It is easy to verify that the cross terms cancel each other in (44)
for θ = arccos(1/

√
3) = 54.74◦. However, it should be noted that

these strategies of using point-like detectors are not optimal in
terms of signal collection efficiency.
We can now switch the role of the two line components and

treat the 2S–4P1/2 transition as a perturbation of the 2S–4P3/2
transition. One may again compute the sum (34) or simply re-
place δ → δ + � and the relative intensities in (44):

I
P3/2
p=0 (θ ) ∝

∣∣∣∣ 1
δ + i�/2

− 1
δ + � + i�/2

∣∣∣∣2(1+ cos2(θ ))

+
∣∣∣∣ 2
δ + i�/2

+ 1
δ + � + i�/2

∣∣∣∣2 sin2(θ ) (45)

4.2.2. Expanded Line Shape

The expanded line shapes of the 2S–4P transitions can be either
determined from (40)–(43) or in a simpler way with (8). Expand-
ing (44) and (45) as (40), one obtains fairly simple expressions:

4P1/2: a1 = 2 a2 = 7− 3 cos(2θ )
�3

a4 = 1+ 3 cos(2θ )
�

(46)

4P3/2: a1 = 7
2

− 3
2
cos(2θ ) a2 = − 4

�3
a4 = −1+ 3 cos(2θ )

�

(47)

Figure 7. Left: Quantum interference contribution to the 2S–4P1/2 resonance for linear laser polarization along the z-axis with the same relative units as
in Figure 6. The emitted spherical components q = −1, 0, 1 correspond to the σ−, π , and σ+ components. The σ -components have the same intensity
pattern. Right: The same for linear laser polarization tilted by θL = 30◦ from the z-axis toward the x -axis. Signal detected with both polarizations along
the x -, y -, and z-axes. These line distorting contributions add to zero independent of laser polarization.
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In both cases, we recover the “magic angle” as a condition for
a4 = 0. Using (9) as the definition of the line pulling we get in
leading order (� 	 �) �ω ≈ a4/4a1:

�ω(P1/2) ≈ 1+ 3 cos(2θ )
8

�2

�
(48a)

�ω(P3/2) ≈ − 1+ 3 cos(2θ )
14− 6 cos(2θ )

�2

�
(48b)

This line shapemay then be convoluted with a Gaussian to obtain
a Fano–Voigt line shape (13) to take a possible Doppler broaden-
ing into account. An important feature of the expanded line shape
is that it will always be of this form, not only for linear laser po-
larization. Without external fields, there are only two energy de-
nominators such that the full line shape is the squaremodulus of
the sum of two Lorentzians only. Another important property is
that the line pulling does not average out by varying the detection
angle θ , say by rotating the laser polarization with a fixed detector
position. At the same time (48a) and (48b) open up another, very
powerful way of cancelling out the quantum interference by us-
ing the averaged line pullings of the 2S–4P1/2 and the 2S–4P3/2,
weighted by their leading-order line strength a1. Note that for the
2S–4P3/2, this line strength depends on the observation direction.
This so-called fine structure centroid is pulled through the quan-
tum interference in next order by

�ω(centroid) ≈ 3 sin(θ )2

22− 6 cos(2θ )
�4

�3
≈ 0 (49)

It contributes with 1.2 Hz to the 2S–4P transition frequency at
maximum, an accuracy level currently out of reach. However, ap-
proximations made, like neglecting saturation effects, can spoil
this cancellation already on the level of 100 Hz for typical exper-
imental parameters. Repeating the analysis with the other two
laser spherical components, p = ±1 yields different expressions
for the line shapes but the same results for the line pullings
(48a), (48b) and (49). This means the cancellation of the quan-
tum interference induced line distortions takes place for any laser
polarization. Since the compensation works for any angle θ , it
also works for a range of angles, that is, for any finite detection
solid angle �d . We have used all of the cancellation schemes dis-
cussed in this work simultaneously, that is, modeling, large �d ,
and weighted average for our recent measurement of the 2S–4P
centroid.[6]

4.2.3. Comparison with Experimental Data

Line pulling due to quantum interference was clearly observed in
our 2S–4P spectroscopy of atomic hydrogen. This became pos-
sible after carefully compensating other systematic effects. The
largest one was the Doppler effect that was compensated with
a standing wave excitation with 486 nm laser light delivered by
a polarization-maintaining fiber and a high-quality collimator
crossing the atomic beam at ≈ 90◦.[27] Using a time-of-flight de-
tection method, we could verify this method down to an uncer-
tainty of 2.1 kHz. While the Doppler shift is compensated, the

Doppler broadening is not. Therefore, the Fano–Voigt line shape
(13) was used for the data analysis.
Large-area photodetectors covering different directions were

employed to record the fluorescence via the 4P–1S decay at
97 nm. The detection solid angles could not be determined with
sufficient accuracy because of an unknown spatial dependence of
the quantum efficiency. While the full line shapes (44) and (45)
depend on the detection solid angle, the form of the expansion
only depends on the number of resonances. Hence, by using as a
fit function (40) or (13), the unknown geometry is modeled with
only one additional parameter thatmeasures the relative strength
of the dispersive component.
To verify our line shape model in this way, it was much sim-

pler to rotate the linear laser polarization than to move the de-
tectors. Figure 8 shows the observed line pulling together with
the model with and without taking into account the quantum in-
terference. To model the line pulling, we have to take the finite
detection solid angle into account. To this end, we introduce three
adjustable paraments, one amplitude to (46) and (47) and a vari-
able coefficient of the cosine term in the denominator of (47).
This model is shown as the gray curves in the upper part of Fig-
ure 8. As expected, the line pulling repeats with rotating the laser
polarization with 180◦ and has the opposite sign for the two line
components. On the other hand, no such modeling is necessary
when using the Fano–Voigt profile as the line shapemodel (lower
part of Figure 8). This removes the effects of quantum interfer-
ence induced line pullingwithin a residual uncertainty of 0.2 kHz
for the fine structure centroid.[6]

4.3. The Helium Triplet Fine Structure

One of the best probes to determine the value of the fine structure
constant α is tomeasure the g -factor of a single trapped electron[7]

and compare the results with theoretical predictions. Very much
like the case of hydrogen, this does not test the underlying theory
of QED. One needs additional measurements to check for con-
sistency. Another way to determine α is using the Rydberg con-
stant R∞ = α2mec/2h from hydrogen spectroscopy and combine
it with a value for me/h from atomic recoil measurements.[8,9]

Also here, the current most precise values of α disagree by 2.4
combined standard deviations.[8,52]

The fine structure of atoms provides another independent
probe to the fine structure constant that has been proposed a long
time ago[53] and used for that purpose extensively. Measured in
atomic units, this splitting is proportional to α2, in contrast to
the gross structure of atomic hydrogen that is in first and second
order independent of α. The fine structure of atomic hydrogen,
that gave this constant its name, is not necessarily the best sys-
tem for its determination. The n = 2 triplet levels of helium have
a larger splitting, a significantly smaller line width and are acces-
sible with standard laser technology. Significant effort has been
invested into the theory[54] to be compared with experimental re-
sults. When using 4He, no hyperfine structure complicates the
level scheme that is shown at the left side of Figure 9. The 23S
level is metastable with a lifetime of 7900 s such that this state
effectively acts as the ground state in many experiments.
There are several experimental approaches tomeasure the fine

structure intervals. The latest work uses a variant of the Ramsey
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Figure 8. Example of the observed line pulling (relative to the results in ref. [6]) of the 2S–4P1/2 and 2S–4P3/2 resonances in atomic hydrogen due to
quantum interference for laser excitation with linear polarization along θL with respect to the z-axis. Top: When fitting a Voigt profile to the experimental
lines the observed line pulling reaches up to 40 kHz. It is somewhat reduced from the maximum value by use of large solid angle photodetectors. Fitted
sinusoidal functions of the type (46) and (47) demonstrate that the apparent line pulling is of that form. However, in practice neither the offset, the
phase, nor the amplitude of this function is known because the solid angle and the position of the detector is experimentally difficult to access and
the absolute frequency of the transition not known before the fit. Bottom: These problems have been avoided by using the Fano–Voigt line shape (13)
to find the line center. The line pulling is reduced to the noise level, given by the residual first-order Doppler shift. The horizonal bars depict the final
uncertainties, including systematic uncertainties. It should be added that this effect can not explain the “proton radius puzzle” (see ref. [6] for details).

Figure 9. Level scheme of the 4He n = 2 triplet system. Left: The fine
structure splitting of the P states. Since the nucleus has no spin, no hy-
perfine structure is present. Right: Zeeman components that are probed
with a circularly polarized laser, labeled ωL . Two possible transitions that
are subject to mutual line pulling due to quantum interference are shown.
The signal is obtained by laser induced repopulation of the 23S1(MJ = 1)
level.

method to drive the radio frequency transitions between the 23PJ

levels directly.[55] The other option is tomeasure at least two 23S1–
23PJ transitions and determine the level splitting by computing
the difference.[56] Saturation spectroscopy is another method[11,12]

that goes beyond the perturbative treatment here and comes with
other systematic effects like velocity changing optical recoils.[29]

As an example we discuss Rabi-type spectroscopy that has been
employed with a crossed atomic beam that is prepared in the
initial 23S(MJ = 0) level using a Stern–Gerlach filter.[10,57] The
signal is generated by detecting atoms in the 23S(MJ = 1) state
after a second Stern–Gerlach filter (see right-hand side of Fig-
ure 9). Quantum interference takes place without interference of
the emitted light as suggested by the classical toy model. Detec-
tion of the 23S(MJ = 1) level is completely equivalent to observ-
ing only the π component of the emission. This probably justifies
the termquantum interference. By switching quickly between the
J = 2 and J = 1 components, severe systematic effects, like the
Doppler effect, are cancelled. However, the mutual line pulling
due to quantum interference is not. As these pullings have the
opposite sign, it adds to the difference. This effect can be de-
scribed in full by solving the optical Bloch equations[58] or with
the explicit perturbative line shapes given in this work.
Detecting the final state instead of the fluorescencemeans that

we can simply evaluate the scattering cross section (20) or (22)
with the matrix elements (18) to obtain the line shape function:

I(ωL ) ∝
∣∣∣∣∣∑

e

∑
p

(−1)p Se,i→f
q ,p ε−p

∣∣∣∣∣
2

(50)

We do not have to worry about the detection geometry of the emit-
ted light. In a sense, it is as if we detect the particular spherical
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component, the π component in this case, within a solid angle of
4π . The initial and final state are given by Ji = 1, Mi = 0, Li = 0
and J f = 1, Mf = 1, L f = 0, respectively. There are two excited
states Je ′ = 2, Me ′ = 1, Le ′ = 1 and Je ′′ = 1, Me ′′ = 1, Le ′′ = 1
that are separated by � = 2π × 2.291 GHz. To compute the ma-
trix elements we could use (28) with the nuclear spin set to zero,
or instead use the corresponding expression without hyperfine
structure

dq (e→ f ) = (−1)J f −Mf

(
J f 1 Je

−Mf q Me

)
〈n f , L f ||d ||ne , Le 〉

× (−1)L f +S+Je+1√(2J f + 1)(2Je + 1)
{
L f J f S
Je L e 1

}

(51)

and an analogous expression for the absorbing dipole moment
that is obtained by replacing f → e , e → i , and q → p. We as-
sume circularly polarized light with p = 1 and detect only the
decay channel q = 0. With this the explicit line shape is obtained
as

Iq=0,p=1 ∝
∣∣∣∣ 1
δ + i�/2

− 1
δ ± � + i�/2

∣∣∣∣2

≈ 1
δ2 + (�/2)2

∓ 2δ/�
δ2 + (�/2)2

(52)

where the− sign describes the line pulling of the 23S1–23P2 tran-
sition by the 23S1–23P1 transition and the + sign for the reverse
case. The detuning δ is measured relative to the 23S1–23P2 energy
splitting. The last expression is the expanded line shape that can
be obtained either with the full model (40)–(43) or, in a simpler
way, with the classical toy model (8). If required, the latter may
be convoluted with a Gaussian to account for a possible Doppler
broadening to obtain a Fano–Voigt line shape (13).
For the line pulling of the fine structure interval, the line

pullings of the two optical transitions, that are given by (9), add.
Since �/� = 1400, only the coefficients a1 = 1 and a4 = ∓2/�
need to be taken into account, and they can be extracted from
(52) or (41) and (43). This yields the pulling of the 23P2-23P1 fine
structure interval:

�ω ≈ −2π × �2

�
= −2π × 1.1 kHz (53)

In other words, the two lines appear to be closer by 1.1 kHz if
the two measured optical resonances are fitted with a Lorentzian
line shape instead of the full line shape (43). This result is in
good agreement with a –1.2(0.1) kHz line pulling obtained from
the full-fledged optical Bloch equations.[58]

Large discrepancies between measurements of the helium
triplet fine structure are found in the literature. For example, X.
Zheng et al.[59] find their result for the 23S–23P centroid-off by
20 combined standard deviations from the result of P. Cancio
Pastor.[60] Correcting components of the latter for the neglected
quantum interference gives a significantly larger error bar.[61] Sig-
nals from saturation spectroscopy are even more difficult to un-
derstand when it comes to tiny line shape distortions. These, and
many other line-distorting effects need to be under full control,

when important precision data can only be obtained from broad
transitions.
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[54] K. Pachucki, V. Patkóš, V. Yerokhin, Phys. Rev. A 2017, 95, 062510.
[55] K. Kato, T. D. G. Skinner, E. A. Hessels, Phys. Rev. Lett. 2018, 121,

143002.
[56] X. Zheng, Y. R. Sun, J. J. Chen, W. Jiang, K. Pachucki, S. M. Hu, Phys.

Rev. Lett. 2017, 118, 063001.
[57] M. Smiciklas, D. Shiner, Phys. Rev. Lett. 2010, 105, 123001.
[58] A. Marsman, M. Horbatsch, E. A. Hessels, Phys. Rev. A 2012, 86,

040501.
[59] X. Zheng, Y. R. Sun, J. J. Chen, W. Jiang, K. Pachucki, S. M. Hu, Phys.

Rev. Lett. 2017, 118, 063002.
[60] P. Cancio Pastor, G. Giusfredi, P. De Natale, G. Hagel, C. de Mauro,

M. Inguscio, Phys. Rev. Lett. 2004, 92, 023001 and erratum 2006, 97,
139903(E).

[61] A. Marsman, M. Horbatsch, E. A. Hessels, J. Phys. Chem. Ref. Data
2015, 44, 031207.

Ann. Phys. (Berlin) 2019, 1900044 C© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim1900044 (16 of 16)


