Ex5a

Exercise 12

9.1 Zeeman Slower

The magnitude of the scattering force on an atom due laser cooling at a detuning δ from the atomic resonance can be written as

$$|\vec{F}_{\text{scatt}}| = \hbar k \frac{\gamma}{2} \frac{S_0}{1 + S_0 + \left(2\frac{\delta}{\gamma}\right)^2} = \hbar k \Gamma_{\text{scatt}}$$

where $k = \omega/c$ with the laser frequency ω , γ is the spontaneous decay rate of the excited state and $S_0 \propto I$ is the saturation parameter.

Consider a thermal beam of atoms (with a resonance frequency ω_0) moving along the z-axis through a magnetic field B(z), where they interact with a counter-propagating laser beam. We define an 'unperturbed' laser detuning $\delta_0 := \omega - \omega_0$.

- (a) Determine the 'effective' detuning $\delta(z)$ for the laser interacting with an atom at velocity v(z), such that the resonance condition reads $\delta(z) = 0$. For the case that the laser is tuned to $\delta_0 = 0$, write down the resonance condition linking the magnetic field B(z) to atoms at velocity v(z).
- (b) Determine the maximum deceleration an atom can experience due to laser cooling.
- (c) Determine the appropriate magnetic field B(z) for the Zeeman slower in case of adiabatic cooling, i.e. the deceleration is maximal for all coordinates z. Hint: $a(z) = v(z) \frac{\partial}{\partial z} v(z).$

9.2 Scattering Force in Laser Cooling and Trapping

Consider a $J = 0 \leftrightarrow J' = 1$ transition in an atomic model system with resonance frequency ω_0 . The atoms are interacting with a pair of red-detuned counterpropagating laser beams with polarizations σ^+ and σ^- . We restrict to one dimension (z-axis, see below), to reduce complexity. Further, we assume $J = 0 \leftrightarrow J' = 1$ to be a typical optical transition, a saturation parameter $S_0 \approx 1$ and a laser at $\delta_0 = \omega - \omega_0 = -2\pi \times 30$ MHz.

In case of an absent magnetic field, an optical molasses is created.

- (a) Using the scattering force F_{scatt} (see 9.1), show that the force on an atom with velocity v is given by $F_{\text{OM}} \approx -\beta v$ with a factor $\beta = 2k \frac{\partial}{\partial \omega} F_{\text{scatt}}(\omega \omega_0)$. For this, assume a Doppler shift, which is small w.r.t the detuning δ_0 .
- (b) Using $\Gamma_{\text{scatt}} \ll \omega \frac{\partial}{\partial \omega} \Gamma_{\text{scatt}}$ (validate this approximation), determine the proportionality constant β and give an estimated numerical value.
- (c) Make a plot of $F_{OM}(v)$ comparing the result with and without the approximation applied in part (a).
- (d) Explain why this configuration is not capable of trapping atoms.
- (e) What modification to the setup is need to be made in order to establish Sisyphus cooling? What's the advantage gained?

For realization of a one-dimensional magneto-optical trap (MOT), a linear magnetic field $B(z) = B_z z$ is applied. The Zeeman splitting of energy levels is assumed to be described by the low-field approximation.

(f) Similar to part (a), deduce an expression for the force F_{MOT} on an atom with velocity v at position z. Again, assume all shifts are small compared to the detuning δ_0 . What kind of classical physical system is modelled here?

9.3 Magneto-optical Sodium Trap

The first magneto-optical trap was successfully demonstrated with sodium employing $3S_{1/2} \leftrightarrow 3P_{3/2}$ transitions in the D₂-line (near 589 nm)¹. The trap was loaded with laser-evaporated pulses of atoms, which where cooled down by chirping a cooling laser.

Sodium is a hydrogen-like atom and can therefore be described as a one-electron system with nuclear spin I = 3/2. The corresponding selection rules for optical dipole transitions within JI-coupling include $\Delta F = 0, \pm 1 \pmod{0}$, $\Delta m_F = 0, \pm 1 \pmod{0} \leftrightarrow 0$ if $\Delta F = 0$ and $\Delta L = \pm 1$.

¹E. L. Raab *et al.*, Phys. Rev. Lett. **59**, 2632 (1987)

- (a) Sketch the level diagram of the $3S_{1/2}$, $3P_{1/2}$ and the $3P_{3/2}$ state including the hyperfine structure ($A_{\text{HFS}} > 0$ for all states).
- (b) In case of the $3S_{1/2}(F = 2) \leftrightarrow 3P_{3/2}(F' = 3)$ hyperfine transition, make a sketch of the Zeeman splitting in the low-field regime and explain how a magneto-optical trap can be realized here.
- (c) Explain, why an additional laser was nescessary to operate a magneto-optical trap at the $3S_{1/2}(F=2) \leftrightarrow 3P_{3/2}(F'=2)$ transition.