
Ex5a
Exercise 12

9.1 Zeeman Slower
The magnitude of the scattering force on an atom due laser cooling at a detuning δ from
the atomic resonance can be written as

|F⃗scatt| = ℏk
γ

2
S0

1 + S0 +
(
2 δ

γ

)2 = ℏkΓscatt

where k = ω/c with the laser frequency ω, γ is the spontaneous decay rate of the excited
state and S0 ∝ I is the saturation parameter.

Consider a thermal beam of atoms (with a resonance frequency ω0) moving along the
z-axis through a magnetic field B(z), where they interact with a counter-propagating
laser beam. We define an ‘unperturbed’ laser detuning δ0 := ω − ω0.

(a) Determine the ‘effective’ detuning δ(z) for the laser interacting with an atom at
velocity v(z), such that the resonance condition reads δ(z) = 0. For the case
that the laser is tuned to δ0 = 0, write down the resonance condition linking the
magnetic field B(z) to atoms at velocity v(z).

(b) Determine the maximum deceleration an atom can experience due to laser cooling.

(c) Determine the appropiate magnetic field B(z) for the Zeeman slower in case of
adiabatic cooling, i.e. the deceleration is maximal for all coordinates z. Hint:
a(z) = v(z) ∂

∂z v(z).

9.2 Scattering Force in Laser Cooling and Trapping
Consider a J = 0 ↔ J ′ = 1 transition in an atomic model system with resonance
frequency ω0. The atoms are interacting with a pair of red-detuned counterpropagating
laser beams with polarizations σ+ and σ−. We restrict to one dimension (z-axis, see
below), to reduce complexity. Further, we assume J = 0 ↔ J ′ = 1 to be a typical optical
transition, a saturation parameter S0 ≈ 1 and a laser at δ0 = ω − ω0 = −2π × 30 MHz.
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In case of an absent magnetic field, an optical molasses is created.

(a) Using the scattering force Fscatt (see 9.1), show that the force on an atom with
velocity v is given by FOM ≈ −βv with a factor β = 2k ∂

∂ω Fscatt(ω − ω0). For this,
assume a Doppler shift, which is small w.r.t the detuning δ0.

(b) Using Γscatt ≪ ω ∂
∂ω Γscatt (validate this approximation), determine the proportion-

ality constant β and give an estimated numerical value.

(c) Make a plot of FOM(v) comparing the result with and without the approximation
applied in part (a).

(d) Explain why this configuration is not capable of trapping atoms.

(e) What modification to the setup is need to be made in order to establish Sisyphus
cooling? What’s the advantage gained?

For realization of a one-dimensional magneto-optical trap (MOT), a linear magnetic field
B(z) = Bzz is applied. The Zeeman splitting of energy levels is assumed to be described
by the low-field approximation.

(f) Similar to part (a), deduce an expression for the force FMOT on an atom with veloc-
ity v at position z. Again, assume all shifts are small compared to the detuning δ0.
What kind of classical physical system is modelled here?

9.3 Magneto-optical Sodium Trap
The first magneto-optical trap was successfully demonstrated with sodium employing
3S1/2 ↔ 3P3/2 transitions in the D2-line (near 589 nm) 1. The trap was loaded with
laser-evaporated pulses of atoms, which where cooled down by chirping a cooling laser.

Sodium is a hydrogen-like atom and can therefore be described as a one-electron system
with nuclear spin I = 3/2. The corresponding selection rules for optical dipole transitions
within JI-coupling include ∆F = 0, ±1 (not 0 ↔ 0), ∆mF = 0, ±1 (not 0 ↔ 0 if
∆F = 0) and ∆L = ±1.

1E. L. Raab et al., Phys. Rev. Lett. 59, 2632 (1987)
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(a) Sketch the level diagram of the 3S1/2, 3P1/2 and the 3P3/2 state including the
hyperfine structure (AHFS > 0 for all states).

(b) In case of the 3S1/2(F = 2) ↔ 3P3/2(F ′ = 3) hyperfine transition, make a sketch
of the Zeeman splitting in the low-field regime and explain how a magneto-optical
trap can be realized here.

(c) Explain, why an additional laser was nescessary to operate a magneto-optical trap
at the 3S1/2(F = 2) ↔ 3P3/2(F ′ = 2) transition.
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