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Quantum interference and light polarization effects in unresolvable atomic lines: Application to a
precise measurement of the 6,7Li D2 lines
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We characterize the effect of quantum interference on the line shapes and measured line positions in atomic
spectra. These effects, which occur when the excited-state splittings are of order of the natural line widths,
represent an overlooked but significant systematic effect. We show that excited-state interference gives rise to
non-Lorentzian line shapes that depend on excitation polarization, and we present expressions for the corrected
line shapes. We present spectra of 6,7Li D lines taken at multiple excitation laser polarizations and show that
failure to account for interference changes the inferred line strengths and shifts the line centers by as much as
1 MHz. Using the correct line shape, we determine absolute optical transition frequencies with an uncertainty of
�25 kHz and provide an improved determination of the difference in mean-square nuclear charge radii between
6Li and 7Li. This analysis should be important for a number of high-resolution spectral measurements that include
partially resolvable atomic lines.
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I. INTRODUCTION

The measurement of accurate atomic transition frequencies
plays an important role in fundamental physics from atomic
clocks to the determination of nuclear charge radii. Determin-
ing accurate frequencies requires a sufficient understanding
of the transition line shape. In particular, the Lorentzian
line shape is of fundamental importance in the analysis of
resonant phenomena in many areas of physics [1]. When
two or more resonances are separated by the order of a
natural line width, unresolvable in a fundamental sense not
limited by instrumentation, there arises the possibility of
interference. The resulting line shape is, in general, no longer
a simple sum of Lorentzians, even in the low-intensity limit.
Although this effect has been known in different contexts
for many years [2–5], it has typically been ignored in
the interpretation of Doppler-free spectra. In our previous
work [6], we demonstrated that quantum interference has an
observable effect on atomic spectra, which can limit accuracy
if not properly accounted for. In Sec. II of this article, we
derive a more general set of lineshapes and estimate the
systematic errors incurred if strictly Lorentzian line shapes are
assumed. In Sec. III, we use the more complete line shapes
to extract absolute transition frequencies from 6,7Li data,
including previously unpublished data, and to quantify errors
associated with incomplete line shapes. Finally, in Sec. IV, we
use our measurement of the 6,7Li D line isotope shift to extract
the relative 6,7Li difference in mean-square nuclear charge
radius. The unresolvable hyperfine structure in the D2 lines of
hydrogen [7], lithium [6], potassium [8], francium [9], singly
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ionized beryllium [10], and magnesium [11] are additional
examples where interference-modified Lorentzian line shapes
are expected.

II. DIPOLE SCATTERING LINE SHAPE

We begin with a derivation of the corrected line shape,
including quantum interference terms, using the Kramers-
Heisenberg formula [12], which describes the differential
scattering rate of light incident on an atom initially in the
state |i〉 and ending in the state |f 〉. It can be derived from
Fermi’s golden rule [13]:

dRi→f

d�s

= 2π

h̄
|Mf i |2ρs, (1)

where h̄ is Planck’s constant (h) divided by 2π and ρs is the
density of scattered photon states into a solid angle d�s along
the scattering direction ks . The scattering matrix element Mf i

is calculated to second order in the electric-dipole coupling.
The scattering matrix element depends on the frequency, wave
vector, and polarization of the incident light (ωL, kL, ε̂L) and
scattered light (ωs, ks , ε̂s). The resulting scattering rate is
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where c is the speed of light, ε0 is the permittivity of free
space, and EL is the amplitude of the electric field of the
incident light. The sum is over excited intermediate states
|j 〉 with transition frequencies ωji and atomic dipole matrix
elements Dji = 〈j |er|i〉. Here e is the electron charge and r is
the position operator of the valence electron. The finite lifetime
of the excited states |j 〉 are accounted for [12] by including
the imaginary part i�j/2 in the transition frequency ωji [14].
Here �j is the inverse lifetime (or full width half maximum
for an isolated Lorentzian line) of |j 〉. Equation (2), valid in
the low-excitation-intensity limit, does not include multiple
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scattering effects like optical pumping. Additionally, we make
the rotating wave approximation, which is appropriate for near-
resonant excitation. While Eq. (2) is a Lorentzian distribution
if only one term of the sum is considered, since the sum
over intermediate states is inside the square, one can see that
interference from different excited states |j 〉 is possible.

For a concrete experimental comparison, we restrict our
analysis to the case where states |i〉 and |f 〉 are hyperfine states
of a single electronic ground state with electronic angular mo-
mentum J , and the intermediate hyperfine states |j 〉 belong to a
single excited electronic state with angular momentum J ′. The
states are labeled by their total angular momentum and z pro-
jection of angular momentum |Fi,mi〉, |Ff ,mf 〉, and |F ′,m′〉.

One can evaluate the atom-field coupling matrix element by
repeatedly applying the Wigner-Eckart theorem. The reduced
matrix elements can be written in terms of the electronic
excited state linewidth � and a reference intensity I0 (see
Appendix A). (For a closed transition such as the Li 2s-2p

transitions considered here, � = �j .) This gives
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Here �F ′
Fi

= ωL − ωF ′Fi
, and AF ′m′

Ff mf
are the normalized dipole

matrix elements containing all the angular dependence of
the atomic dipole. The explicit form for AF ′m′

Fimi
is given in

Appendix A.
Since the denominator in Eq. (3) is independent of m′, we

can sum the numerator over m′. Defining the function

CF ′
i→f (ε̂s , ε̂L) =

∑
m′

(
ε̂s · AF ′m′

Ff mf

)(
AF ′m′

Fimi
· ε̂L

)
, (4)

we have
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where CF ′
i→f (ε̂s , ε̂L) depends on the initial- and final-state

quantum numbers Fi , mi , Ff , and mf .
Equation (5) describes the differential scattering rate of

light into solid angle d�s (along ks) with polarization ε̂s for
atoms starting in state |Fi,mi〉 and ending in |Ff ,mf 〉. In a
typical spectroscopy experiment, the final scattering state is
unresolved, so the scattering rate RFimi→Ff mf

is summed over
final states Ff and mf . To further simplify the discussion, we
assume the detection is polarization insensitive and sum over
the two scattered polarizations ε̂s ⊥ ks for a given detection
direction ks . If, in addition, we assume an unpolarized atomic
sample, we must average over all initial mi . Summing and
evaluating the square in Eq. (5) gives rise to sums of Lorentzian
components and cross terms:
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where the line strengths f (ks , ε̂L, Fi, F
′) and cross-term

strengths g(ks , ε̂L, Fi, F
′, F ′′) for a particular laser polariza-

tion and detected direction are given by
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where gT = ∑
i(2Fi + 1) is the total number of Zeeman

states in the ground electronic state, assumed here to be uni-
formly thermally populated. When the excited-state hyperfine
splitting is not well resolved, �F ′

Fi
− �F ′′

Fi
≡ �F ′′

F ′ ≈ �, then
the cross terms are not necessarily negligible, as implicitly
assumed in the latter portion of Ref. [15].

A. Angular dependence

Dipole scattering of light follows a dipole radiation pattern
[16], which for linearly polarized light depends only on the
angle γ between excitation laser polarization εL and the
fluorescence collection direction ks . The angular dependence
of the dipole scattering is proportional to cos2 γ and can always
be written as a sum of a spherically symmetric component and
a dipole component [Atot + BP2(cos(γ ))]/(4π ). Here Atot is
the total line strength integrated over all solid angle, P2(x) =
(3x2 − 1)/2 is the second Legendre polynomial (which has
zero integral over solid angle), and B characterizes the
amplitude of the angular dependence. By construction, f

contains all the scattering line strength, the integral over
solid angle of the cross terms g, proportional to P2(cos γ ),
vanishes. A consequence of this angular dependence is that
f (ks , ε̂L, Fi, F

′) does not provide the correct ratio of line
strengths of the Fi → F ′ transitions for an arbitrary choice of
detection direction, γ , since B/Atot is not the same for different
F ′. As we will show, however, there exist “magic” orientations
where f does give line strengths consistent with resolved
transitions. More importantly, at these magic conditions the
cross terms g vanish, giving rise to purely Lorentzian line
shapes.

We parametrize γ in terms of angles relevant to an
experimental geometry. The wave vectors k̂L and k̂s define
a plane which we take to be the x̂-ẑ plane. Without loss of
generality we can take k̂L along x̂, so that ε̂L lies in the ŷ-ẑ
plane, making an angle θL with respect to ẑ, and k̂s lies in the
x̂-ẑ plane making an angle θs with respect to ẑ (see Fig. 1). The
scattering is then parameterized by the linearly independent
angles θs and θL; f (ks , ε̂L, Fi, F

′) = f (θs, θL, Fi, F
′) and

similarly for g [17]. The spherical harmonic addition theorem
[18] can be used to relate P2(cos γ ) to θs and θL:

P2(cos γ ) = 1
2 (3 cos2 θs cos2 θL − 1). (8)

The general form for f and g is then

f (θs, θL, F, F ′) = AF ′
F + BF ′

F

2
(3 cos2 θs cos2 θL − 1),

(9)

g(θs, θL, F, F ′, F ′′) = CF ′F ′′
F

2
(3 cos2 θs cos2 θL − 1),
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FIG. 1. (Color online) Coordinate system: The excitation laser
propagates along x̂ so that the linear polarization direction ε̂L lies in
the ŷ-ẑ plane, parameterized by θL. The detection direction ks lies
in the x̂-ẑ plane and is parameterized by θs. In our apparatus, light
collection is centered along ẑ with an angular spread determined by
the numerical aperture of the imaging system. The atomic beam is
along ŷ.

where AF ′
F , BF ′

F , and CF ′F ′′
F are constants determined by

evaluating Eq. (7). When cos θs cos θL = 1/
√

3, g vanishes
and f correctly gives the line-strength ratios. This can occur
for a range of geometries. In particular, when the detection
ks is orthogonal to the excitation kL (θL = γ , θs = 0) as in
our apparatus [6], then θL = arccos( 1√

3
) ≡ θM ≈ 54.73o is the

so-called “magic” angle. Similar magic-angle effects occur
in quantum beat spectroscopy, which could be viewed as
a time-domain analog of the effect considered here, where
the excitation pulse width replaces the natural width [19,20].
Explicit expressions for f (θL, Fi → F ′) and g(θL, Fi →
F ′, Fi → F ′′) are evaluated for lithium with the collection
along the ẑ direction in Appendix B.

B. Line-shape impact on extracted frequencies

We now give a qualitative discussion of the effect of
the additional interference terms on Doppler-free, or nearly
free, spectra. We choose 6,7Li as an example because of
its fundamentally unresolvable structure (�F ′′

F ′ /� ≈ 1) and
because it allows for direct comparison to experimental data.
Figure 2 illustrates two primary effects. First, the maxima of
the total line shape are shifted relative to what is predicted by
a simple sum of Lorentzian distributions, which can lead to
errors in extracting the weighted line center. Second, peaks
may vary in intensity and prominence depending on the
polarization angle of the laser. For example in Fig. 2, θL = 0,
the amplitude of the F = 2 → F ′ = 3 component is reduced
with respect to the F = 2 → F ′ = 2 component.

Line centers are typically determined by fitting a sum
of Lorentzian functions to the observed spectral profile. We
characterize the effect of cross terms on line centers (both
of individual hyperfine components and of centers of gravity
of composite features) by taking a Doppler-free line shape
given by Eq. (7) with cross terms and fitting to it using only
Lorentzian functions (amplitude, center, offset, linewidth). We
then compare the centers given by Eq. (7) to the centers
extracted from the fit to estimate the effect of the cross terms
on measured quantities. From Eq. (9) (with θL = γ , θs = 0),
one can see that the magnitude of the shifts, proportional
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FIG. 2. (Color online) The scattering rate (or intensity), dR

d�
in

arbitrary units, of the F = 2 → F ′ = 1, 2, 3 Doppler-free feature
in 7Li with θL = 0. Red line shows the sum of Lorentzians with
polarization independent weights, blue dashed line shows the sum of
cross terms, black line shows the sum of Lorentzians and cross terms.
The laser frequency ωL/(2π ) is the offset from the F = 2 → F ′ = 2
peak in units of MHz. The inset is the F = 2 → F ′ = 2 peak enlarged
to show the shift in the line center.

to the angular-dependent terms, has maxima at θL = 0, π/2
and the sign of the effect changes at θL = θM. This will be
experimentally verified in the next section. The size of the
shifts in Li are on the order of 100 kHz to 1 MHz; large enough
to completely overshadow effects associated with Doppler
shifts and optical pumping.

To provide an estimate for other transitions not explic-
itly considered here, we imagine atoms with the electronic
structure of 6Li or 7Li with variable hyperfine coupling.
We consider shifts of individual hyperfine components as
the hyperfine splitting is varied. We intuitively expect that
degenerate resonances would not affect the measured line
position. In the opposite limit, �F ′′

F ′ /� � 1, we also expect
the line positions to be unperturbed. These two limits imply
that there must be an intermediate hyperfine splitting that
maximally affects the measured line positions. We can see
in Fig. 3 that this happens when �F ′′

F ′ /� is of order one.
To get a feel for the apparent shifts of individual components

as a function of separation, we consider a simple analytically
solvable line shape consisting of two Lorentzian profiles with
splitting � and equal amplitude. We take line profiles with and
without cross terms and determine the component positions
for each as the zero crossings of their first derivatives. We
examine the difference of the position of the first component
in the Lorentzian-only profile, xL, and the position of the
corresponding component in the full line profile including
cross terms, xF, as a function of the splitting �. In the limit
of distantly spaced resonances, �/� � 1, the difference in
line centers is xF − xL  �2/(4�), in agreement with the
large splitting limit described in Ref. [5]. These shifts at
large separation have recently been calculated at the 1 kHz
level in metastable He [21] and in principle occur in muonic
hydrogen, although at ≈100 MHz they are much too small
to account for the discrepancy between proton charge radius
values [22,23]. In alkali metals with resolvable hyperfine
structure, i.e., 87Rb and 133Cs, these shifts may also appear
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ΘL 2

ΘL 0

F 1 2 F' 1 2, 3 2

0 6Li 2 4 6 8

0.10

0.05

0.00

0.05

F'
F''

Δ H
FS

FIG. 3. (Color online) Error in the measured hyperfine splitting
(in units of �) for a F = 1/2 → F ′ = 1/2, 3/2 transition as a
function of the assumed separation when the theoretically calculated
full line shape is fit as the sum of two Lorentzians. The dash dotted
(solid) curve is for laser polarization θL = π/2 (0). The error in the
hyperfine splitting is greatest where the assumed separation is about
1.3 times the natural line width. The red vertical line indicates the
x position of the actual hyperfine splitting for 6Li. Its vertical extent
shows the range of errors that can occur when the laser polarization
is varied between 0 and π/2.

at the ≈10 kHz level which, while much smaller than in
unresolvable lines, is on the order of the reported experimental
uncertainties [24,25]. This zero intensity shift may also arise
from fine structure interference, and for Li is ≈860 Hz (below
our experimental uncertainty). These shifts at large separation
may be particularly insidious because they would only add a
weak linear dependance to the background without deforming
the line shape, as in the case of unresolvable features.

We also investigate the dependence of an unresolved
feature’s extracted center of gravity on hyperfine separation,
as shown in Fig. 4. Using the same procedure, we generate
the full line shape, now with three components (F = 2 →
F ′ = 1, 2, 3). We vary the splitting via the magnetic dipole
constant, A3/2, while fixing the electric quadrupole constant
at the value appropriate for 7Li. The same qualitative behavior
occurs, producing extracted center-of-gravity shifts which are
largest when |A3/2| (∝�F ′′

F ′ ) is of order �. There is now an
additional feature; since there are two resonances that can
shift relative to each other, the sign of the shift can change for
a given laser polarization.

III. APPLICATION TO 6,7LI EXPERIMENTAL DATA

Having discussed the nature and theoretical implications
of quantum interference effects on the observed line shape,
we apply our theoretical results to experimentally measured
spectra of lithium taken at multiple laser polarization angles.
Improved spectroscopy of the Li D lines (see Fig. 5 for
level structure) is of broad interest in physics because the
isotope shift of these lines may serve as a nuclear-model-
independent method to measure relative nuclear charge radii,
which are especially interesting in the neutron-rich 8,9,11Li
[26]. Measured isotope shifts for the lithium 2s-2p (D lines)
[27–31] or 2s-3s [32–35] transitions can be combined with
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FIG. 4. (Color online) Error in the measured center of gravity (in
units of �) for a F = 2 → F ′ = 1, 2, 3 transition as a function of the
hyperfine A constant when the theoretically calculated full line shape
is fit as a sum of three Lorentzians. The dash dotted (solid) curve is
for laser polarization θL = π/2 (0). The red vertical line indicates the
x position of the actual A constant for 7Li. Its vertical extent shows
the range of errors that can occur when the laser polarization is varied
between 0 and π/2.

precise theoretical calculations [26,36,37] to determine the
relative nuclear charge radii of lithium isotopes. Additionally,
measured D-line transition frequencies are used as input for the
calculation of species-specific “tune in or out” optical lattices
for mixtures of quantum degenerate gases [38–40].

Our additional measurement and analysis provides a refined
determination of the absolute transition frequencies of the
6,7Li D2 lines. When combined with previously measured D1

values [6] these new data provide an improved measure of
the 6,7Li excited state fine structure, 2s-2p isotope shift, and
the isotopic difference in the 2P fine-structure splitting, the
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FIG. 5. (Color online) Relevant 6,7Li level structure. The hyper-
fine components for the D2 transition have natural widths of order of
the hyperfine splitting. “IS” stands for isotope shift.
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FIG. 6. (Color online) Simplified schematic of experimental
apparatus. The interaction region is surrounded by three layers of
mu-metal (not shown) to minimize the magnetic field. The coordinate
system shown is consistent with Fig. 1.

splitting isotope shift (SIS). The SIS provides the best point
of comparison between theory and experiment. We propose
that the interference effect we describe here is the root cause
for some disagreements between previous measurements in
Li [27–30] and for the lack of internal consistency of the
frequency-comb-based measurement in K [8].

A. Apparatus and procedure

A simplified schematic view of our apparatus [6,41] is
shown in Fig. 6. Light from a single-frequency diode laser
intersects a collimated thermal beam of lithium atoms at a
right angle. A half wave plate controls the angle of polarization
of the light. The laser beam is retroreflected by a precise
corner cube that provides a return beam antiparallel to better
than 1.45 μrad. The return beam is chopped at 500 Hz by a
mechanical chopper. We observe the spectrum by scanning
the laser frequency over a lithium component and record
the fluorescence along an axis approximately orthogonal to
both the laser and atomic beams. To minimize stray light, the
interaction region is imaged on the photocathode through a
stack of three narrow-band 670 nm interference filters.

The lithium beam is formed in a vacuum system with
a background-gas pressure of less than 1.3 × 10−5 Pa (1 ×
10−7 Torr). Lithium atoms effuse from an oven that is typically
operated at 450 ◦C and are collimated to a beam with a
divergence angle of 1.4 mrad by a 2 mm aperture at a distance
of 1.4 m. Isotopically enriched 6Li was added to the oven to
produce a beam with approximately equal densities of the two
naturally occurring isotopes.

The lithium resonances are probed by a diode laser at
670 nm that is locked to an evacuated Fabry-Perot cavity
using the Pound-Drever-Hall method [42]. This servo-lock
narrows and stabilizes the diode laser output. Despite the wide
bandwidth of the servo, the laser line width is limited to about

500 kHz due to acoustic noise that couples to the cavity. The
laser can be scanned under computer control by varying the
voltage applied to a piezo electric stack to which one of the
cavity mirrors is mounted. In the interaction region the laser
is collimated to a 3.5-mm-diameter beam and the laser power
was typically attenuated to 3 μW. Stability of the laser power
over a single scan was better than 1%.

The lithium fluorescence signal is detected in two channels
by a gated photon counter. One of these channels observes
the fluorescence when both forward and return laser beams
interact with the lithium beam. For the other channel the return
beam is blocked by the chopper and the signal is attributable
to the forward beam only. By differencing the photon count
in the two channels, we recover the signal due to the reverse
beam. In this way we obtain the forward and reverse signals
simultaneously in a single scan with an optical setup in which
the antiparallelism of the forward and reverse beams is limited
only by the precision of the corner-cube retroreflector.

Our experiment differs from previous observations of the
lithium D lines in that we measure directly the frequency of
the laser using a femtosecond optical frequency comb [43].
The comb is a commercial instrument based on an Er fiber
laser with a repetition rate of 250 MHz. The fiber laser output
is frequency doubled and broadened with a photonic crystal
fiber producing a comb with broad spectral coverage in the
red and near-infrared regions. A low-resolution spectrometer
is used to observe the spectral distribution of the comb to
optimize the output at 670 nm. The repetition rate and carrier
offset frequency of the comb are referenced to a stable quartz
oscillator which is in turn locked to a cesium clock. This
configuration produces a frequency reference with an absolute
accuracy of better than 2 parts in 1013 and an Allan deviation
of approximately 3 × 10−13 for integration times of 1 to 100 s.
The frequency measurement using the comb is, therefore, a
negligible contributor to our experimental uncertainty.

The spectroscopy laser is beat against a single tooth of
the frequency comb using a high-speed photodetector and a
narrow-band filter having a center frequency of 30 MHz and
a width of about 6 MHz. To record a calibrated scan across
a lithium line, the repetition rate of the frequency comb is
first adjusted so that the beat frequency between an arbitrary
mode of the comb and the spectroscopy laser is approximately
30 MHz. A computer-generated voltage ramp is then used to
vary both the laser frequency and the comb repetition rate so
that the beat frequency remains fixed at 30 MHz.

Data are recorded by scanning the laser across a lithium
resonance in steps of approximately 250 kHz. A settling time
of 200 ms is allowed after each step. Scans are acquired in pairs
with increasing and decreasing laser frequency. Fluorescence
data are accumulated alternately on the two gated-photon-
counter channels for a total acquisition time of 72 ms on each
channel. The beat-note frequency between the spectroscopy
laser and the frequency comb is counted over the same time
interval. For every data point, we record the comb repetition
rate, comb offset frequency, beat-note frequency, beat-note
signal strength, lithium fluorescence signal on both photon
counter channels, and spectroscopy laser output power.

Doppler-free spectra of the Li D lines were taken at different
laser polarization angles θL and fit using the line shapes
presented here convolved with a Gaussian to account for
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the residual Doppler broadening present in the experiment,
typically ≈4 MHz. For resolved resonance features without a
polarization dependence, such as the D1 lines, the independent
fitting parameters are the line center, the overall amplitude, a
constant background offset, the natural width, and the Doppler
width. The polarization angle of any given data set was
fixed. For the unresolved fluorescence features, we limited
the number of fitting parameters by fixing the excited-state
hyperfine splittings to values calculated in Ref. [44] and in
agreement with Ref. [45]. In addition we fixed the ratio
of the unresolved amplitudes to values given by Eq. (9),
with numerical values for AF ′

F , BF ′
F , and C

F ′,F ′′
F tabulated in

Appendix A. A small correction was made to account for
the effect of the finite collection angle of the detector (see
Appendix C).

B. Observation of apparent line-strength and transition
frequency variation with θL

One of the most striking features present in the more
complete line shapes is the change in the amount of scattered
light with excitation polarization. A single fit to five spectra at
different laser polarization angles demonstrates good overall
agreement, including relative line strengths. Figure 7 shows
the F = 1/2 → F ′ = 1/2, 3/2 D2 feature of 6Li (center,
ωL/(2π ) ≈ 0 MHz) and the F = 2 → F ′ = 1, 2 D1 peaks
of 7Li (left and right, ωL/(2π ) ≈ ±50 MHz). The 7Li D1

lines have no angular dependence (in general no D1 lines have
angular dependence). The presence of the D1 lines enable the
single fit to multiple data sets because they allow the effect of
background light levels and laser intensity fluctuations to be
compensated for in multiple spectra taken at different times.
The fit to these five data sets used only one natural width and
one (mass-scaled) Doppler width.

FIG. 7. (Color online) Amplitude of scattered light, proportional
to Eq. (7), as a function of laser frequency ωL and laser polarization
angle θL. The laser frequency is offset from the 6Li F = 1/2
ground state by 446 THz (see Table I for optical frequencies). The
gray-scale surface is the complete theoretical line shape including
cross terms and the red points are experimental data taken at
θL = 0◦, 25◦, 51◦, 75◦, and 90◦. The central feature is the F = 1/2 →
F ′ = 1/2, 3/2 transitions in 6Li while the two constant amplitude side
peaks are the F = 1 → F ′ = 1, 2 D1 lines of 7Li.

Full line shape fit

Lorentzian fit

7Li F 1 F' 0,1,2

0 20 40 60 80
7.6

7.4

7.2

7.0

6.8

6.6

6.4

ΘL deg

Ω
0

2
Π
M
H
z

FIG. 8. (Color online) Line center of 7Li F = 1 → F ′ = 0, 1, 2
feature fit from experimentally measured spectra as a function of laser
polarization angle with respect to the collection direction. Transition
frequencies are offset from the 7Li F = 1 ground state by 446 THz
(see Table I for optical frequencies). The black (red) data points were
extracted by fitting the data to functions with (without) interference
cross terms. Error bars represent the uncertainties given in Table I.

To demonstrate the apparent transition frequency shifts
resulting from analysis with an incomplete line shape in
measured 7Li D2 data, we fit the same spectra taken at
different laser polarizations and extract the line centers, with
and without the cross terms. In Fig. 8, the red points are line
centers fit without cross terms and the black points are the
same data fit with the full theory. The black points are self
consistent, independent of laser polarization while the red
points exhibit a strong polarization dependence. The fit to
the red data is of the form A + BP2(cos θL). The amplitude of
the laser-polarization-dependent shift is of order 1 MHz.

Near the magic angle θL = θM ≈ 54.7◦ the Lorentzian fits
give the same line center as the full line shape.

C. Discussion of systematics

1. Angular offset.

To accurately extract line positions at all polarizations, the
angle θL between the laser polarization and the detection
optics must be controlled and understood. Using a wave
plate, we could precisely define θL up to a small unknown
offset angle θ0. We improved our previous estimate of θ0 [6]
by geometric measurements made when disassembling the
apparatus, finding θ0 = −0.7 (10) degrees.

As a consistency check, we compared the well-known
ground-state hyperfine intervals (GHIs) to GHI values we
measure by subtracting optical frequencies at multiple angles
θL. We note that, for small offsets θ0, the line shifts near
θL = 0, π/2 are insensitive to first order in θ0 because the
derivative of the angular dependence (∝ sin θL cos θL|θL=γ,θs=0)
vanishes. This is of practical utility since data fit at θL = 0, π/2
with the complete line shape including cross terms should be
accurate as well as equal to each other. We found that, while the
GHIs derived from measurements of the resolved D1 lines [6]
were consistent with known values [46], the GHIs derived
from the unresolved D2 lines at θL = 0, π/2 differed from
the known values by as much as 30 kHz. This disagreement
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indicates the importance of intensity-dependent shifts on the
line shapes when cross terms are significant.

2. Intensity-dependent shifts.

For isolated lines, the fitted amplitudes are taken to be free
parameters and the fitted line centers are independent of fitted
amplitude. As a consequence, the centers of the resolved lines
are not sensitive to intensity-dependent effects like optical
pumping that modify the line ratios from their theoretical
values. For unresolvable lines, however, the fitted line positions
depend on the fixed relative values of f and g used in the
fit. The unresolvable lines are therefore sensitive to intensity-
dependent effects. To explore the impact of excitation-laser
intensity on extracted line centers, we measured a subset
of spectra at multiple laser powers and performed a full
optical Bloch equation (OBE) simulation of the scattering,
including all the ground and excited Zeeman levels [47,48].
We numerically solve the OBE with a time-dependent Rabi
frequency proportional to the Gaussian intensity profile seen
by the atom as it transverses the excitation-laser beam. We
then generate a Doppler-free line shape by calculating the
directional photon scattering rates derived from the OBE as
a function of laser frequency. At the intensities used here
and in Ref. [6], we find that these intensity-dependent effects
are small but important (≈20 kHz). However, we suggest
that larger previously reported uncertainties (≈100 kHz) in
39,41K [8] ascribed to optical pumping could likely be removed
by using a line shape that includes cross terms.

To quantitatively account for intensity-dependent light
shifts and optical-pumping effects on the line positions, we
generate numerical OBE data at several different intensities
and fit the numerical data using the analytically calculated
line strengths f and g appropriate for low intensity. (We
confirm that in the low-intensity limit, the numerical data
matches both the expected line positions and line strengths.)
We then determine the linear intensity-dependent line shifts
from this numerical data and apply this shift to the measured
line positions [49]. The laser intensities were determined
experimentally from the relative line strengths of the resolved
features taken at different laser intensities. This estimate of
the intensity is somewhat lower than estimates based on
measured beam waists and laser power (typically 3.5 mm and
3 μW, respectively) but removes uncertainty associated with
secondary measurements of beam waist and power. For most
features, the shift was of order of a few kHz/μW, but for the
7Li D2 F = 1 → F ′ = 0, 1, 2 transitions it was as large as
6.7 kHz/μW (for our beam waist). The uncertainty in this
correction was set equal to the value of the applied shift and
represents one of the largest sources of uncertainty in the exper-
iment. For the unresolvable lines considered here, we find that
optical pumping can have a larger systematic effect than the
light shifts alone. Future experiments should be careful to work
at low intensities to avoid these shifts on unresolvable lines.

3. Doppler correction.

The correction of the first-order Doppler effect was de-
termined from simultaneously recorded forward and reverse
beam signals using a corner cube to retroreflect the excitation
laser beam. For the polarization-independent D1 lines [6] the
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FIG. 9. (Color online) 7Li ground-state hyperfine interval
(F = 1 → F = 2) as function of laser polarization angle. The
measured GHI was determined by subtracting absolute measurements
of the excited state F = 1 → F ′ = 0, 1, 2 and F = 2 → F ′ = 1, 2, 3
features including Doppler and intensity-dependent corrections (see
the text). The red (black, blue) data are for an angular offset of
−3.7◦ (−0.7◦, 2.3◦). The red (black, blue) curve is of the form
Aθ0 sin(θ ) cos(θ ) + GHI0, where GHI0 is the value measured in Ref.
[46] and Aθ0 is fit to the data. The triangular point is data from Ref. [6]
reanalyzed using the procedure described in the present work. Error
bars represent the uncertainties given in Table I.

systematic contribution to the uncertainty of this correction is
1.4 kHz due to imperfections of the corner-cube retroreflector.
Because the retroreflector does not preserve the laser polar-
ization, the Doppler correction for the polarization-sensitive
unresolved D2 lines could not be determined using the corner
cube and is taken instead from a linear fit of correction versus
time for resolved components measured on the same day. This
is necessary because the laser alignment drifts slightly over
hours of data taking and results in a larger Doppler uncertainty
of about 10 kHz.

6Li F 1 2 F 3 2
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FIG. 10. 6Li ground-state hyperfine interval (F = 1/2 → F =
3/2) as a function of laser polarization angle. The measured
GHI was determined by subtracting absolute measurements of
the excited state F = 1/2 → F ′ = 1/2, 3/2 and F = 3/2 → F ′ =
1/2, 3/2, 5/2 features. The solid line is the value measured in
Ref. [46]. Error bars represent the uncertainties given in Table I.
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TABLE I. Measured frequencies of hyperfine components and
centers of gravity (cog) of the 6,7Li D2 lines.a

Line F F ′ Frequency (MHz)

6Li D2 3/2 5/2 446799571.067 (21)
6Li D2 3/2 3/2 446799573.962 (21)
6Li D2 3/2 1/2 446799575.673 (21)
6Li D2 1/2 3/2 446799802.172 (16)
6Li D2 1/2 1/2 446799803.883 (16)
6Li D2 cog 446799648.870 (15)
7Li D2 2 3 446809874.895 (20)
7Li D2 2 2 446809884.357 (20)
7Li D2 2 1 446809890.170 (20)
7Li D2 1 2 446810687.873 (25)
7Li D2 1 1 446810693.687 (25)
7Li D2 1 0 446810696.445 (25)
7Li D2 cog 446810183.163 (16)

aUnresolved component splittings for the D2 lines are fixed at values
calculated from the hyperfine A and B constants of Ref. [44].

D. Results: Absolute transition frequencies, excited-state
hyperfine splitting, isotope shift, and splitting isotope shift

Including the Doppler corrections and the power-dependent
shifts, the GHI values at θL = 0, π/2 are in agreement with
each other and the known values [46] (see Figs. 9 and 10).
The value of θ0 that minimizes the sin θL cos θL angular
dependence is consistent with the geometrically determined
value. The final reported line positions, shown in Table I,
represent an average over θL. A representative uncertainty
budget is given in Table II.

Measurements at multiple laser polarizations analyzed with
the correct line shape provide an important tool to indepen-
dently estimate systematic errors associated with the offset
angle θ0. For example, power-dependent shifts such as optical
pumping can partially cancel the effect of θ0 on the line shape
and GHI. Minimizing residuals and comparing the GHI near
θm can still lead to small systematic shifts in the line positions.
These effects are more prominent in 7Li than 6Li, and our
new determinations of the centers-of-gravity of the absolute
transition frequencies differ from our previous results [6], by
83 and 19 kHz, respectively. From the absolute frequencies
the excited-state fine-structure splitting (Table III), as well

TABLE II. Representative uncertainty budget (kHz).

Uncertainty 6Li D2

component F = 3/2 → F ′ = 5/2, 3/2, 1/2

Statistical variation 4
First-order Doppler effect 10
Estimate of θm 3
Laser-power-dependent shiftsa 17
Laser-intensity variation 3
Hyperfine constant inaccuracy 2
Imaging system imperfections 2
Magnetic-field shift <1
Reference frequency 0.089
Total 21

aOptical pumping, multiple excitation recoil, ac Stark shift.

TABLE III. Excited-state fine-structure intervals.

Intervala Splitting (MHz) Ref.

6Li 2p 2P fs 10052.779 (17) This work
6Li 2p 2P fs 10052.799 (22) Sansonetti [6]
6Li 2p 2P fs 10052.76 (22) Brog [50]
6Li 2p 2P fs 10052.044 (91) Walls [29]
6Li 2p 2P fs 10052.964 (50) Noble [30]
6Li 2p 2P fs 10052.862 (41) Das [31]
6Li 2p 2P fs 10050.932 (8)b Puchalski (theory) [44]
7Li 2p 2P fs 10053.310 (17) This work
7Li 2p 2P fs 10053.393 (21) Sansonetti [6]
7Li 2p 2P fs 10053.184 (58) Orth [51]
7Li 2p 2P fs 10052.37 (11) Walls [29]
7Li 2p 2P fs 10053.119 (58) Noble [30]
7Li 2p 2P fs 10051.999 (41) Das [31]
7Li 2p 2P fs 10051.477 (8)b Puchalski (theory) [44]

aAll D1 values are taken on the same apparatus and reported in
Ref. [6].
bThe uncertainties reported in [44] represent only the numerical
uncertainty and do not include any estimate of the size of corrections
not included in the calculations.

as the 2s-2p IS and the SIS (Table IV) are calculated and
compared to the existing literature. As discussed in Ref. [37],
both quantum electrodynamic and nuclear-size corrections
largely cancel when calculating the SIS. It is, therefore, the
most reliable result of theory and has been suggested as a
benchmark for testing the internal consistency of experimental
data. Previously reported results have disagreed with each
other and with theory far beyond their reported uncertainties
(Table IV). Our current result resolves these discrepancies and
is in full agreement with the most recent theoretical result [44].
This supports the theory that underlies the use of D-line ISs
to determine mean-square nuclear charge radii for short-lived
Li isotopes.

IV. EXTRACTION OF RELATIVE NUCLEAR
CHARGE RADII

Finally, we calculate the difference in the 6,7Li nuclear
charge radii using the measured D2 isotope shifts reported in

TABLE IV. 7,6Li isotope shifts.

Transition Shift (MHz) Ref.

D2 IS 10534.293 (22) This work
D2 IS 10534.357 (29) Sansonetti [6]
D2 IS 10533.59 (14) Walls [29]
D2 IS 10534.194 (104) Noble [30]
D2 IS 10533.352 (68) Das [31]
SISa 0.531 (24) This work
SIS 0.594 (30) Sansonetti [6]
SIS -0.67 (14) Walls [29]
SIS 0.155 (60) Noble [30]
SIS -0.863 (79) Das [31]
SIS 0.396 (9) Yan (theory) [37]
SIS 0.5447 (1) Puchalski (theory) [44]

aAll D1 values are taken on the same apparatus and reported in
Ref. [6].
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FIG. 11. (Color online) Measurements of difference in mean-
square charge radius between 7Li and 6Li. The points are grouped
by type of measurement and are then ordered chronologically within
different types of measurement. The solid black line is the weighted
average of the results of Refs. [36,52,53], along with the D1 value
from [6] and the D2 value from this work. Error bars for the present
work represent the uncertainties given in Table IV; all other error bars
represent the uncertainties given in the original references.

Table IV and the D1 shifts reported in Ref. [6]. This serves as a
point of comparison amongst different types of measurements
including elastic electron scattering [52], optical isotope shift
measurements on the 3S1 →3 P0,1,2 transition in Li+ [53], and
optical isotope shift measurements of the 2s-3s, D1, and D2

transitions in neutral Li [27–35] as shown in Fig. 11. We
calculate the difference in nuclear charge radius using Eq.
(40) of Ref. [26],

δ
〈
r2

c

〉
(7,6Li) = 〈

r2
c

〉
(7Li) − 〈

r2
c

〉
(6Li) = (Emeas − E0)

C0
, (10)

where 〈r2
c 〉(iLi) is the mean-square nuclear charge radius

of the ith isotope in fm2, Emeas is the measured isotope
shift in MHz, E0 = −10 532.5682 (−10 532.0237) MHz
is the theoretically calculated isotope shift excluding the
finite size corrections for the D2(D1) transitions [54], and
C0 = −2.4658 MHz/fm2 [54].

The values of the difference in mean-square nuclear charge
radius are −0.705 (3) fm2 for the D1 and −0.700 (9) fm2 for
the D2 lines. These values are self-consistent and have the
smallest uncertainties among those shown in Fig. 11. They
bring the D-line measurements into full agreement with the
best values from electron scattering and optical IS measure-
ments on 2s-3s and 3S1 →3 P0,1,2 transitions in Li and Li+,
respectively.

V. CONCLUSION

We reviewed low-intensity scattering theory as it applies to
the spectroscopy of alkali-metal atoms with unresolvable hy-
perfine structures. We find that the effects of light polarization
and quantum interference alter the relative line strengths and
quantitatively affect the extraction of transition frequencies
from data, even in the low-intensity limit. Optical pumping
effects at finite excitation power can further complicate the

line shape, which we account for numerically. This leads
to a revised determination of the 6,7Li D2 line frequencies
and splitting isotope shift. We identify several species: H [7],
22,23Na [55], 39,40,41K [8], and 220−228Fr [9], 7,9,11Be II [10],
and 25Mg II [11], for which these complete line shapes will
enable the next generation of measurements.
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APPENDIX A

1. Expressions for the normalized dipole matrix elements.

The vector components of A are easiest to describe in the
spherical vector basis Aq appropriate for σ+, π , and σ− light,
where

A1 = −(Ax + iAy)/
√

2, A0 = Az,
(A1)

A−1 = (Ax − iAy)/
√

2.

Using the Wigner-Eckart theorem, the dipole matrix elements
are given in terms of reduced matrix elements as

(
DF ′m′

Fm

)
q

= 〈F ′||D||F 〉√
2F ′ + 1

〈Fm; 1q|F ′m′〉, (A2)

where 〈Fm; 1q|F ′m′〉 is the Clebsch-Gordan coefficient for
adding |F,m〉 to |1,q〉 to get |F ′,m′〉. Under the assumption
that the hyperfine interaction does not modify the electronic
structure of the state, the F -reduced matrix elements can be
written in terms of J -reduced elements

〈F ′||D||F 〉 = 〈J ′||D||J 〉
√

f F ′
F , (A3)

where the reduced oscillator strength f F ′
F for the F -F ′

transition can be written in terms of Wigner 6-j symbols:

√
f F ′

F = (−1)F+I+1+J ′√
2F + 1

√
2F ′ + 1

{
J ′ J 1

F F ′ I

}
.

(A4)

Defining the components of the matrix elements (AF ′m′
Fm )q for

each J → J ′ transition

(
AF ′m′

Fm

)
q

=
√

2J ′ + 1√
2F ′ + 1

〈Fm; 1q|F ′m′〉
√

f F ′
F , (A5)

the dipole matrix elements can be written as

(
DF ′m′

Fm

)
q

= 〈J ′||D||J 〉√
2J ′ + 1

(
AF ′m′

Fm

)
q
. (A6)

Pulling the reduced matrix element 〈J ′||D||J 〉 out of the sum,
Eq. (2) can be written in terms of the inverse scattering rate �

and a saturation intensity I0:

� = 1

τ
= ω3

3πε0h̄c3

|〈J ′||D||J 〉|2
(2J ′ + 1)

, (A7)
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TABLE V. D2 weights and cross terms for I = 1/2 applicable to
H, 11Be II.

F F ′ F ′′ AF ′
F BF ′

F C
F ′,F ′′
F

0 1 1/18 −1/36
1 1 2 1/12 1/48 −1/16
1 2 5/12 −7/48

and

I0 = πhc�

3λ3
, (A8)

giving Eq. (3), where ω and λ are the frequency and wavelength
of the transition, respectively.

APPENDIX B

1. Calculation of weights f and g.

The dipole radiation weights f and g are calculated
using the expression for AF ′m′

Fm [Eq. (A5)] to determine CF ′
i→f

[Eq. (4)], evaluating the sums in Eq. (7) and then comparing
with the dipole radiation pattern (9). Taking ks along ẑ, (i.e.,
θs = 0), with the two scattered polarizations ε̂s1 = x̂ and
ε̂s2 = ŷ, and ε̂L to lie in the ẑ-ŷ plane as in Fig. 1, the terms in
the sum are given by

ε̂s1 · AF ′m′
Fm = −1√

2

[(
AF ′m′

Fm

)
1 − (

AF ′m′
Fm

)
−1

]
, (B1)

ε̂s2 · AF ′m′
Fm = i√

2

[(
AF ′m′

Fm

)
1 + (

AF ′m′
Fm

)
−1

]
, (B2)

ε̂L · AF ′m′
Fm = i sin θL√

2

[(
AF ′m′

Fm

)
1 + (

AF ′m′
Fm

)
−1

]
+ cos θL

(
AF ′m′

Fm

)
0. (B3)

We report line weights and cross terms for the D2

transitions, 2S1/2 → 2P 3/2, of alkali-metal atoms and hydrogen
with I = 1/2, 1, and 3/2 in TablesV, VI, and VII, respectively.

Note that there is no angular dependence to the D1 terms and
therefore no dipole dependence (BF ′

F = C
F ′,F ′′
F = 0 for D1).

Also note that C
F ′,F ′′
F = C

F ′′,F ′
F . Physically, this is because

scattering through F ′′ is indistinguishable from scattering
through F ′ when the F ′′ and F ′ are overlapped within the
natural width.

TABLE VI. D2 weights and cross terms for I = 1 applicable to
2H and 6Li, 28Na.

F F ′ F ′′ AF ′
F BF ′

F C
F ′,F ′′
F

1/2 1/2 3/2 8/18 0 −4/81
1/2 3/2 10/81 −1/81
3/2 1/2 3/2 1/81 0 2/405
3/2 3/2 5/2 8/81 16/2025 −14/225
3/2 5/2 1/2 1/3 −7/75 −1/90

TABLE VII. D2 weights and cross terms for I = 3/2 applicable
to 7,9,11Li,21,23,34Na, 39,41K, and 87Rb, 7,9Be II.

F F ′ F ′′ AF ′
F BF ′

F C
F ′,F ′′
F

1 0 1 1/24 0 0
1 1 2 5/48 −1/48 −1/32
1 2 0 5/48 0 −1/48
2 1 2 1/48 1/1200 1/160
2 2 3 5/48 0 −7/120
2 3 1 7/24 −7/100 −7/400

APPENDIX C

1. Collection optics correction.

If fluorescence is collected over all solid angle there is
no polarization-dependent modification to the line shape.
The equations given in the text are valid for light scattered
into an infinitesimal solid angle. Here we find the modi-
fication to the angular-dependent part of the line weights
and cross terms due to the finite numerical aperture of
the fluorescence collection optics. For a given laser po-
larization ε̂L, we may integrate over the final scattering
directions k̂s allowed by the collection optics (parameterized
by θs,φs):

ε̂L = sin θL ŷ + cos θL ẑ,

k̂s = sin θs cos φs x̂ + sin θs sin φs ŷ + cos θs ẑ, (C1)

ε̂L · k̂s = cos γ,

Performing the angular integrations over the isotropic part,
where d�s = dφd cos(θs), we find

∫∫ 2π,θC

0,0
d�s = 2π (1 − cos θC) ≡ S0. (C2)

The angle-dependent dipole part is scaled by

∫∫ 2π,θC

0,0
d�sP2(cos γ ) = π cos θC sin2 θCP2(cos θL)

≡ S2P2(cos θL). (C3)

Here θC is the half angle of the fluorescence collection cone.
For determining experimentally relevant fitting functions, the
ratio of the constant and dipole part is important, and we find
that the dipole components are reduced relative to the constant
components as

S2/S0 = cos θC cos2

(
θC

2

)
. (C4)

These scaling factors are included as part of the fitting
functions to account for the numerical aperture of the imaging
system. Failure to include these scaling factors shifts the
extracted line centers by ≈6 kHz for θC = 26.6o used in this
experiment.
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[33] R. Sánchez, M. Žáková, Z. Andjelkovic, B. A. Bushaw,

K. Dasgupta, G. Ewald, C. Geppert, H.-J. Kluge, J. Krämer,
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