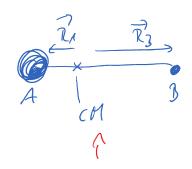
Ro-vibrational spectra of diatomic molecules

Mittwoch 2 Februar 2022 16:10

Roberthonal & viboritional excitations


Born-Opperheime approx > e faste -> see before

nuclear d.o.f. are treated separatly

e w.f. of electronic staks 4% ($\{\vec{r}, \vec{r}, \{\vec{r}, \{\vec{r}, \vec{r}, \{\vec{r}, \{\vec{r}, \vec{r}, \{\vec{r}, \{\vec{r$

now: S.E. for the nuclei

 $\left(\frac{-h^{2}}{2\pi_{A}}\Delta_{A} + \frac{-h^{2}}{2\pi_{3}}\Delta_{3} + \epsilon_{pod}\{\{\bar{7}_{j}\}_{i}^{2}\{k\}\}\} = \epsilon_{pod}\{\{\bar{7}_{j}\}_{i}^{2}\{k\}\}\}$

these are the pokential
Curve, we looked at before

e coordinates

- Indo CM Syskin:

$$\left(\frac{-t^2}{2M}\Delta + E_{pot}(R, u)\right)\xi(\vec{R}) = E_{\psi}(\vec{R})$$

=) sysku becomes votationally symmetric

$$\Rightarrow$$
 spherical coordinate $\{(2,0,0)=5(R)-\gamma(\theta,\phi)\}$

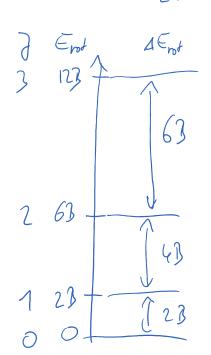
ála Habon!!

angular put $Y(\theta, \phi)$ — quentum is unbes

atom: l, me

molecules: 7, mz

redial part, 1D S.E. for R


trivial if R= const E= Etot = Eun + Epot

$$E_{u,h} = E_{rot} = \frac{7(7+1) \pm^2}{2 MR^2}$$

$$\frac{7}{2 MR^2}$$

$$4E = E(J+1) - E(J) =$$

$$= \frac{1}{2MR^2} 2(J+1) = 2B_e(J+1)$$

Moleküle			Rotationskonstanten	
Molekül	$\omega_e = \frac{\hbar \omega}{hc} [cm^{-1}]$	ħω[eV]	Molekül	B _e (meV)
		0.55	H ₂	7,64
H ₂	4395		Li ₂	0,085
Li ₂	351	0.044	N ₂	0,253
N ₂	2359	0.296	0,	0,182
02	1580	0.198	-	
NO	1904	0.239	NO	0,22
l ₂	214	0.027	I ₂	0,005
ICI	384	0.048	ICI	0,014
HCI	2990	0.376	HCI	1,33

Be a mel = thermal energies] UT = 25 mel

at RT: mole cules rotak at quite high quantum numbes

Vibrations of tomorrow